127k views
1 vote
Which of the following is equivalent to the polynomial given below?

x^2+6x+20

PLEASE HURRY!!

Which of the following is equivalent to the polynomial given below? x^2+6x+20 PLEASE-example-1
User JDC
by
4.1k points

1 Answer

4 votes

Given:

Polynomial
x^2+6x+20

To find:

The equivalent polynomial.

Solution:


x^2+6x+20=0

a = 1, b = 6, c = 20

Using quadratic formula:


$x=\frac{-b \pm \sqrt{b^(2)-4 a c}}{2 a}


$x=\frac{-6 \pm \sqrt{6^(2)-4 \cdot 1 \cdot 20}}{2 \cdot 1}


$x=\frac {-6 \pm √(-44)}{2}

44 can be written as 11 × 4 = 11 × 2²


$x= \frac {-6 \pm √(-11 * 2^2)}{2}


$x= \frac {-6 \pm2 √(-11 )}{2}


$x =(2(-3 \pm i √(11)))/(2)

Cancel the common factor 2.


$x =-3 \pm i √(11)


$x =-3 + i √(11),
$x =-3 - i √(11)

Convert into factors.


$x -(-3 + i √(11))=0,
$x -(-3 - i √(11))=0


$x + (3 - i √(11))=0,
$x + (3 + i √(11))=0


$(x + (3 - i √(11)))(x + (3 + i √(11)))

Interchange their positions.


$(x + (3 + i √(11)))(x + (3 - i √(11)))

Therefore option B is the correct answer.

The equivalent polynomial is
$(x + (3 + i √(11)))(x + (3 - i √(11))).

User Baku
by
4.5k points