Answer:
t=0.93 seconds or t=0.07 seconds
Explanation:
If
![h=-16t^2+8t-1](https://img.qammunity.org/2021/formulas/mathematics/high-school/adw0yu687mcgev7r16cfdyucmd16qk7y37.png)
The time when the projectile lands on the ground is when its height, h=0.
![-16t^2+8t-1=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/r8khbm6gd4iqd7053kj95ocki2xrl9gydz.png)
Using Factoring by Perfect Squares
![-16t^2+8t=1\\\text{Divide all through by the coefficient of t^2}\\(-16t^2)/(-16) +(8t)/(-16)=(1)/(-16)\\t^2-(1)/(2)t=-(1)/(16)](https://img.qammunity.org/2021/formulas/mathematics/high-school/lqfqiswmtezk0b0c5oejo7lfhe0yoz2u5d.png)
Divide all through by the coefficient of
![t^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/l8183yfpal8d896m3p6irxhsln0s5wglwz.png)
![(-16t^2)/(-16) +(8t)/(-16)=(1)/(-16)\\t^2-(1)/(2)t=-(1)/(16)](https://img.qammunity.org/2021/formulas/mathematics/high-school/ymmkpa08rzj0gv1xjo55m442hsn0wl8gr5.png)
Next, divide the coefficient of t by 2, square it and add it to both sides.
![t^2-(1)/(2)t+(-(1)/(2))^2=-(1)/(16)+(-(1)/(2))^2\\(t-(1)/(2))^2=-(1)/(16)+(1)/(4)\\(t-(1)/(2))^2=(3)/(16)\\](https://img.qammunity.org/2021/formulas/mathematics/high-school/dncl5bf6oh8bdkjnulu5wkkuuw890w71tx.png)
Taking square roots of both sides
![t-(1)/(2)=\sqrt{(3)/(16)}\\t=(1)/(2) \pm \sqrt{(3)/(16)}\\t=(1)/(2) \pm (√(3))/(4)](https://img.qammunity.org/2021/formulas/mathematics/high-school/bwv88udeb9y24aqxrkdsisnp5d7mef90so.png)
Therefore:
![t=(1)/(2) + (√(3))/(4) \: OR \: t=(1)/(2) - (√(3))/(4)\\t=(2+√(3))/(4) \: OR \: (2-√(3))/(4)\\t=0.93seconds \: OR \: 0.07 seconds](https://img.qammunity.org/2021/formulas/mathematics/high-school/zpabfc88e5roftbxp8mlyjna3sw35l6vze.png)