Given:
Circle with center O.
To find:
The measurement of the angle GHJ.
Solution:
The arc measure of full circle is 360°.
m(ar GJ) + m(ar JI) + m(ar IH) + m(ar HG) = 360°
m(ar GJ) + 115° + 31° + 68° = 360°
m(ar GJ) + 214° = 360°
Subtract 214° from both sides.
m(ar GJ) + 214° - 214°= 360° - 214°
m(ar GJ) = 146°
The measure of inscribed angle is half the intercepted arcs.
![$\Rightarrow m\angle GHJ = (1)/(2) m(ar \ GJ)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/oca088k82tfzovey2yp7flsilsadn1u2dd.png)
![$\Rightarrow m\angle GHJ = (1)/(2) (146^\circ)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/jaqy0xyzwdj883nc43ctcg5ztksvekyhg7.png)
![$\Rightarrow m\angle GHJ =73^\circ](https://img.qammunity.org/2021/formulas/mathematics/middle-school/cvx8u4c2vxbwr39uuw0wtb4lcxhp110c4o.png)
The measure of angle GHJ is 73°.