Answer:
DC = 39
Explanation:
From inspection of the diagram:
- EA is tangent to both circles
- DE is the radius of circle D
- CA is the radius of circle C
The tangent of a circle is always perpendicular to the radius, therefore:
DE ⊥ EA and CA ⊥ EA
As ∠DEB and ∠BAC are both 90°, then DE is parallel to CA.
Therefore, ∠DBE and ∠ABC are vertically opposite angles, and are therefore equal.
As triangles ΔBED and ΔBAC have two pairs of corresponding congruent angles, the triangles are similar.
Therefore:
![\implies \sf (DE)/(CA)=(EB)/(BA)](https://img.qammunity.org/2023/formulas/mathematics/high-school/jqjaahy4j8d2de2qqzjba0dy2lbypwoxo4.png)
![\implies \sf (10)/(5)=(24)/(BA)](https://img.qammunity.org/2023/formulas/mathematics/high-school/ioop6fr2aiiahx28qvdp1wl0wmauqfrzmo.png)
![\implies \sf BA=12](https://img.qammunity.org/2023/formulas/mathematics/high-school/nfk5wlgtksjdjotsfn8v33xvaiuh7e4jrw.png)
Using Pythagoras' Theorem for ΔBED to find DB:
![\implies \sf DE^2+EB^2=DB^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/3irnvmao9170albn1tjccgpjyg2j9kufdn.png)
![\implies \sf 10^2+24^2=DB^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/7kx6d4u4nxpuf67j05mld68yzqb568uhbi.png)
![\implies \sf DB^2=676](https://img.qammunity.org/2023/formulas/mathematics/high-school/obcow88yl8fm0ll4r92w22elpnednsa0ng.png)
![\implies \sf DB=√(676)](https://img.qammunity.org/2023/formulas/mathematics/high-school/mj79rskggfkg2oascw4z9yopl2r6eeslm8.png)
![\implies \sf DB=26](https://img.qammunity.org/2023/formulas/mathematics/high-school/sfv27dyw8c039btndg7qmw7bwz85pahn3c.png)
Using Pythagoras' Theorem for ΔBAC to find BC:
![\implies \sf CA^2+BA^2=BC^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/ol3wudyc226ev44ge7wxz7hj9efpccmv5g.png)
![\implies \sf 5^2+12^2=BC^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/t1e2hdb649tnp9wpuj9mtwauik97a0kw5r.png)
![\implies \sf BC^2=169](https://img.qammunity.org/2023/formulas/mathematics/high-school/96576nmlv01h6vxkikuy0s271i918el0jt.png)
![\implies \sf BC=√(169)](https://img.qammunity.org/2023/formulas/mathematics/high-school/1cshvt57z5dihzvwdg7aneh6u2rkvql659.png)
![\implies \sf BC=13](https://img.qammunity.org/2023/formulas/mathematics/high-school/j0etj8xhemzsofyy85gpcbsinbpic923yd.png)
Therefore, the distance between the center of the circles DC is:
![\begin{aligned} \implies \sf DC & = \sf DB + BC\\& = \sf 26 + 13\\& = \sf 39\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/d4zmd6oeu1oyutnp365r11wprwz39xlvfq.png)