Answer:
Q = 62
Step-by-step explanation:
The solution is obtained by manipulating the energy balance of the system:
Q = W + ΔU
⇒ Q = P*(V₂ - V₁) + mcv*(T₂ - T₁)
⇒ Q = P*V₁ + m*(((mcv)He /m) + ((mcv)Ar /m)*((P*V₂/(mR) - T₁)
⇒ Q = mRT₁ + ((mcv)He + (mcv)Ar)*(2P*V₁/(mR) - T₁)
⇒ Q = T₁*(Nm*Ru + (mcv)He + (mcv)Ar)
⇒ Q = T₁*(Nm*Ru + (MNcv)He + (MNcv)Ar)
where
T₁ = (27 + 273) K = 300 K
Nm = (7 + 3) kmol = 10 kmol = 10⁴ mol
Ru = 8.314 J*K⁻¹*mol⁻¹
(MNcv)He = (4 g*mol⁻¹)*(3*10³ mol)*(3.1156 kJ*Kg⁻¹*K⁻¹)*(1 kg/10³ g)*(1 MJ/10³ kJ) = 0.0373872 MJ*K⁻¹
(MNcv)Ar = (40 g*mol⁻¹)*(7*10³ mol)*(0.3122 kJ*Kg⁻¹*K⁻¹)*(1 kg/10³ g)*(1 MJ/10³ kJ) = 0.087416 MJ*K⁻¹
Finally, we get
⇒ Q = 300*(10*8.314 + 4*3*3.1156 + 40*7*0.3122)*10⁻³
⇒ Q = 62