Given:
![a=4√(3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/7ydw6cm76f9kqdvzrxqggwpr74aiyxkasb.png)
To find:
The area of the figure
Solution:
The given figure is regular hexagon.
Number of sides = 6
Using apothem formula:
![$a=(s)/(2 \tan \left((180^\circ)/(n)\right))](https://img.qammunity.org/2021/formulas/mathematics/middle-school/yrpehidd5nbfo4nhbeipj8phiqltlg8nhs.png)
where a is apothem, s is side length and n is number of sides of the polygon.
![$4√(3) =(s)/(2 \tan \left((180^\circ)/(6)\right))](https://img.qammunity.org/2021/formulas/mathematics/high-school/q614xd11dqq0lurpjlpvchmhzwfy185vvq.png)
Multiply by 2 on both sides.
![$8√(3) =\frac{s}{ \tan {30^\circ}}](https://img.qammunity.org/2021/formulas/mathematics/high-school/myapu4catm6fgj900phyg4rnyhhlaeipo2.png)
![$8√(3) =(s)/( (1)/(√(3) ) )](https://img.qammunity.org/2021/formulas/mathematics/high-school/8abo3dvee31m6y4hzez1j4vw3be322bgnf.png)
![$8√(3) =\frac{s{√(3) }}{ 1 }](https://img.qammunity.org/2021/formulas/mathematics/high-school/2otd5khkyhet8e9lkoyhz10hfnpj11xwkl.png)
Cancel the common factor
on both sides, we get
![8=s](https://img.qammunity.org/2021/formulas/mathematics/high-school/bx4y3iroc1z9jbtx2l935even006e60fw3.png)
Side length of the polygon = 8 units
Area of the polygon:
![$A=(1)/(2) * ( \text {apothem }* \text{ perimeter})](https://img.qammunity.org/2021/formulas/mathematics/high-school/2v0hu48lv61iy8sp25pumh53of8wgaygts.png)
![$A=(1)/(2) * ( 4√(3) * 6* 8)](https://img.qammunity.org/2021/formulas/mathematics/high-school/vx3i278rpt6uatcv1su8j9o7qu6tw5mxe6.png)
![$A=96√(3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/b8lgwpdydrhqquzqlj1583zo0ds8rkpda0.png)
A = 166.27 in²
The area of the figure is 166.27 in².