Given:
![f(x)=-4 \sqrt[3]{x}+6](https://img.qammunity.org/2021/formulas/mathematics/college/r24y08i0rwssj94ojuoeg6h94ymcgn7xgd.png)
To find:
Which table shows correct values for the function.
Solution:
Substitute x = -8 in the function:
![f(-8)=-4 \sqrt[3]{-8}+6](https://img.qammunity.org/2021/formulas/mathematics/college/siwjox31kqhc4tzfg3py5eorinr6ay3f3z.png)
Apply radical rule:
, if n is odd.
![f(-8)=-(-4 \sqrt[3]{8})+6](https://img.qammunity.org/2021/formulas/mathematics/college/a421hpgn29s83ta1va534ppycdarmydofn.png)
![f(-8)=4 \sqrt[3]{2^3}+6](https://img.qammunity.org/2021/formulas/mathematics/college/k31gu9ud61u0g3pgri1bd9ngbx7j0x7b7z.png)

f(-8) = 14
Substitute x = -1 in the function:
![f(-8)=-4 \sqrt[3]{-1}+6](https://img.qammunity.org/2021/formulas/mathematics/college/owojebxwskgwxm6o9uh6ea7kuj8y7p4gpi.png)
Apply radical rule:
, if n is odd.
![f(-1)=-(-4 \sqrt[3]{1})+6](https://img.qammunity.org/2021/formulas/mathematics/college/ux2os3cvtt5l148tak9bvvgm45poe4aduz.png)
![f(-1)=4 \sqrt[3]{1^3}+6](https://img.qammunity.org/2021/formulas/mathematics/college/q0et8rt5v4sx8kwse3fxfezqnxtp2ak14s.png)

f(-8) = 10
Substitute x = 0 in the function:
![f(0)=-4 \sqrt[3]{0}+6](https://img.qammunity.org/2021/formulas/mathematics/college/he0e32es2hii8hxmeddzpg0nl5vz5tfmus.png)

f(0) = 6
Substitute x = 8 in the function:
![f(8)=-4 \sqrt[3]{8}+6](https://img.qammunity.org/2021/formulas/mathematics/college/1fomxh5q0fe7w8d4sm69kj9ijhj3d3g9ol.png)
![f(8)=-4 \sqrt[3]{2^3}+6](https://img.qammunity.org/2021/formulas/mathematics/college/j60llpecjzoe1r03d8kvf5ov7lzyfivxzb.png)

f(8) = -2
Therefore table 3 is shows correct values for the function.