4.15
![y'+\frac 2xy=x^3](https://img.qammunity.org/2021/formulas/mathematics/college/xbs9ssg5hkcxr91vsmwm1j33gfe2sc1qtr.png)
is a linear ODE; multiply both sides by the integrating factor
:
![x^2y'+2xy=x^5](https://img.qammunity.org/2021/formulas/mathematics/college/8c4kuvsug6sl1e1kxpx3ilh8z0ojjtpiml.png)
Now the left side can be condensed as the derivative of a product:
![(x^2y)'=x^5](https://img.qammunity.org/2021/formulas/mathematics/college/uk66wehx1h79ig10ryyf8zhy2d9jj68ql5.png)
Integrate both sides and solve for
to get
![x^2y=\frac{x^6}6+C\implies y=\frac{x^4}6+\frac C{x^2}](https://img.qammunity.org/2021/formulas/mathematics/college/9t69q6p51n83y8bmbvw4zi5nya7e18wqbg.png)
Given that
, we find
![-\frac56=\frac16+C\implies C=-1](https://img.qammunity.org/2021/formulas/mathematics/college/950dy9j6cpontqqobpj0flv1ph6sue2yvx.png)
and so the particular solution is
![\boxed{y(x)=\frac{x^4}6-\frac1{x^2}}](https://img.qammunity.org/2021/formulas/mathematics/college/bx88fnq001uxqn4myo0shxjo73h9litnw5.png)
5.15
![2y^2\,\mathrm dx+(x+e^(1/y))\,\mathrm dy=0](https://img.qammunity.org/2021/formulas/mathematics/college/31x5zjkdqrxguzkw9o0h9wloapmai2baov.png)
You may be tempted to write this as an ODE in
, but the ODE in
is much easier to solve, since it's linear. Solve for
and rearrange the terms:
![(\mathrm dx)/(\mathrm dy)=-(x+e^(1/y))/(2y^2)\implies x'+\frac x{2y^2}=-(e^(1/y))/(2y^2)](https://img.qammunity.org/2021/formulas/mathematics/college/7ddv2558hscve4wnjn66kfsz62izdj8w92.png)
Multiply both sides by the integrating factor
, then solve for
:
![e^(-1/(2y))x'+(e^(-1/(2y)))/(2y^2)x=-(e^(1/(2y)))/(2y^2)](https://img.qammunity.org/2021/formulas/mathematics/college/aqxac0086t3pmz8vk3hgam4chy39xiz5jc.png)
![\left(e^(-1/(2y))x\right)'=-(e^(1/(2y)))/(2y^2)](https://img.qammunity.org/2021/formulas/mathematics/college/9dbx86smua4zaf4g5kri3bpppxbmijzpw4.png)
![e^(-1/(2y))x=e^(1/(2y))+C](https://img.qammunity.org/2021/formulas/mathematics/college/f70a4tka9ydwsdppkt1d8xdqwgdvumezq6.png)
![x=e^(1/y)+Ce^(1/(2y))](https://img.qammunity.org/2021/formulas/mathematics/college/huf7k6p8925y6nvdbbdgi30pe0a2pk4t3p.png)
Given that
when
, we have
![e=e+Ce^(1/2)\implies C=0](https://img.qammunity.org/2021/formulas/mathematics/college/sgzwjyk6aug3grgehvlijiddw47qpklin9.png)
so the particular solution is
![\boxed{x(y)=e^(1/y)}](https://img.qammunity.org/2021/formulas/mathematics/college/n46w9yuwxnhcjaucnvsjujur4xyysj9mn4.png)
or, by solving for
,
![\boxed{y(x)=\frac1{\ln x}}](https://img.qammunity.org/2021/formulas/mathematics/college/rsirb923uqefms8lt0wvhkvqcqxmrwtnpp.png)
6.15
![y'-y=2xy^2](https://img.qammunity.org/2021/formulas/mathematics/college/yyuz3fo48pmczg98m28z3domdo3d75euzm.png)
Dividing through both sides by
lets us write the equation in Bernoulli form:
![y^(-2)y'-y^(-1)=2x](https://img.qammunity.org/2021/formulas/mathematics/college/7cuc0chjci8s7gclz57mt61qkpj2s697vk.png)
Substitute
, so that
. Then we get an ODE that is linear in
:
![-v'-v=2x\implies v'+v=-2x](https://img.qammunity.org/2021/formulas/mathematics/college/lwl2bij67or0prtqqf2qriaaskxrclssye.png)
Multiply both sides by the integrating factor
:
![e^xv'+e^xv=(e^xv)'=-2xe^x](https://img.qammunity.org/2021/formulas/mathematics/college/5028yzc7g0pb1debb1haxmcrievyw3ziw7.png)
Integrate both sides and solve for
, then solve for
:
![e^xv=-2e^x(x-1)+C](https://img.qammunity.org/2021/formulas/mathematics/college/5lzyd58n3qje05zu6m0gvjxstvp97ziqhp.png)
![v=-2(x-1)+Ce^(-x)](https://img.qammunity.org/2021/formulas/mathematics/college/2js0dtbh9cjcegi0fqwxya54ezwrx3h255.png)
![\frac1y=-2(x-1)+Ce^(-x)](https://img.qammunity.org/2021/formulas/mathematics/college/i677987oqssavbkw4rjete62sa0713p8g2.png)
Given that
, we find
![2=2+C\implies C=0](https://img.qammunity.org/2021/formulas/mathematics/college/pfsd4yydxonqfnl5u4ajep3qx3vll2mela.png)
so the particular solution is
![\frac1y=-2(x-1)=2-2x\implies\boxed{y(x)=\frac1{2-2x}}](https://img.qammunity.org/2021/formulas/mathematics/college/s0mcqgh789ek99e0au7gm3j8tjsq7trqsk.png)