159k views
5 votes
Evaluate this:


\displaystyle\rm\int_0^(\pi)/(2)√(\sin x)\ dx * \int_0^(\pi)/(2)(1)/(√(\sin x))\ dx

Only elementary methods are allowed.​

User Petelids
by
7.1k points

1 Answer

5 votes

The first integral has a well-known beta function representation, so the second one should too. The beta function itself is defined as


B(x,y) = \displaystyle \int_0^1 t^(x-1) (1-t)^(y-1) \, dt

and satisfies the identity


\displaystyle B(x,y) = (\Gamma(x) \Gamma(y))/(\Gamma(x+y))

Later on, we'll also use the so-called reflection formula for the gamma function; for non-integer z,


\Gamma(z) \Gamma(1-z) = (\pi)/(\sin(\pi z))

as well as the identity


(\Gamma(z+1))/(\Gamma(z)) = z

Replace
x\to\sin^(-1)(x) in both integrals, so that


\displaystyle \int_0^(\frac\pi2) √(\sin(x)) \, dx = \int_0^1 (\sqrt x)/(√(1-x^2)) \, dx


\displaystyle \int_0^(\frac\pi2) (dx)/(√(\sin(x))) = \int_0^1 (dx)/(\sqrt x √(1-x^2))

Now replace
x\to\sqrt x :


\displaystyle \int_0^1 (\sqrt x)/(√(1-x^2)) \, dx = \frac12 \int_0^1 x^(-\frac14) (1-x)^(-\frac12) \, dx = \frac12 B\left(\frac34, \frac12\right)


\displaystyle \int_0^1 (dx)/(\sqrt x √(1-x^2)) = \frac12 \int_0^1 x^(-\frac34) (1-x)^(-\frac12) \, dx = \frac12 B\left(\frac14, \frac12\right)

So, the original integral (which I condense here to a double integral) is


\displaystyle \int_0^(\frac\pi2) \int_0^(\frac\pi2) \sqrt{(\sin(x))/(\sin(y))} \, dx \, dy = \frac14 B\left(\frac34, \frac12\right) B\left(\frac14, \frac12\right)


\displaystyle = \frac14 (\Gamma\left(\frac14\right) \Gamma\left(\frac34\right) \Gamma\left(\frac12\right)^2)/(\Gamma\left(\frac54\right) \Gamma\left(\frac34\right))


\displaystyle = \frac14 (\Gamma\left(\frac14\right) \Gamma\left(\frac34\right) \Gamma\left(\frac12\right)^2)/(\frac14 \Gamma\left(\frac14\right) \Gamma\left(\frac34\right))


\displaystyle = \Gamma\left(\frac12\right)^2 = (\pi)/(\sin\left(\frac\pi2\right)) = \boxed{\pi}

User Robbie Dc
by
7.8k points