41,404 views
36 votes
36 votes
Solve for the missing side. round to the nearest 10th.

Solve for the missing side. round to the nearest 10th.-example-1
User FaultyBagnose
by
2.3k points

1 Answer

24 votes
24 votes

Answer :

  • 6.7 mm


\:

Explanation :

  • This is Right Angled Trian1gle.


\:

Solution :

  • We'll solve this using the Pythagorean Theorem.


\:

Where,

  • VW (9 mm) is the Hypotenuse.

  • UV (6 mm) is the Base.

  • UW is the Perpendicular .


\:

We know that,


{\longrightarrow \pmb{\mathbb {\qquad (UV) {}^(2) + (UW) {}^(2) =( VW) {}^(2) }}} \\ \\

Now, we will substitute the given values in the formula :


{\longrightarrow \pmb{\sf {\qquad (6) {}^(2) + (UW) {}^(2) =( 9) {}^(2) }}} \\ \\

We know that, (6)² = 36 and (9)² = 81. So,


{\longrightarrow \pmb{\sf {\qquad 36 + (UW) {}^(2) =81}}} \\ \\

Now, transposing 36 to the other side we get :


{\longrightarrow \pmb{\sf {\qquad (UW) {}^(2) =81 - 36 }}} \\


{\longrightarrow \pmb{\sf {\qquad (UW) {}^(2) = 45}}} \\ \\

Now, we'll take the square root of both sides to remove the square from UW :


{\longrightarrow \pmb{\sf {\qquad \sqrt{(UW) {}^(2)} = √( 45)}}} \\ \\

When we take the square root of (UW)² , it becomes UW,


{\longrightarrow \pmb{\sf {\qquad UW = √(45)}}} \\ \\

We know that, square root of 45 is 6.708.


{\longrightarrow \pmb{\sf {\qquad UW \approx6.708}}} \\ \\

So,

  • The measure of the missing side (UW) is 6.7 mm (Rounded to nearest tenth)
User StaWho
by
3.1k points