117k views
4 votes
Part 2: Use the information provided to write the vertex form equation of each parabola.

1. Vertex: (1,4)
Focus: (7/8, 4)

2. Vertex: (5, 0)
Directrix: x = 21/4

3. Vertex: (-1, 2)
Directrix: y = 41/20

User Dapeng Li
by
7.8k points

1 Answer

3 votes

Answer: 1. x = -2(y - 4)² + 1

2. x = -y² + 5

3. y = -5(x + 1)² + 2

Explanation:

Notes: The vertex formula of a parabola is x = a(y - k)² + h or y = a(x - h)² + k

  • (h, k) is the vertex
  • p is the distance from the vertex to the focus


\bullet\quad a=(1)/(4p)

1)


\text{Vertex}=(1,4)\qquad \text{Focus}:\bigg((7)/(8),4\bigg)\\\\\text{Given}: (h,k)=(1,4)\\\\\\p=focus-vertex=(7)/(8)-(8)/(8)=(-1)/(8)\\\\\\a=(1)/(4p)=(1)/(4((-1)/(8)))=(1)/(-(1)/(2))=-2

Now input a = -2 and (h, k) = (1, 4) into the equation x = a(y - k)² + h

x = -2(y - 4)² + 1

***********************************************************************************

2)


\text{Vertex}=(5,0)\qquad \text{Directrix}:x=(21)/(4)\\\\\text{Given}: (h,k)=(5,0)\\\\\\p=vertex-directrix=(20)/(4)-(21)/(4)=(-1)/(4)\\\\\\a=(1)/(4p)=(1)/(4((-1)/(4)))=(1)/(-1)=-1

Now input a = -1 and (h, k) = (5, 0) into the equation x = a(y - k)² + h

x = -1(y - 0)² + 5 → x = -y² + 5

***********************************************************************************

3)


\text{Vertex}=(-1,2)\qquad \text{Directrix}:y=(41)/(20)\\\\\text{Given}: (h,k)=(-1,2)\\\\\\p=vertex-directrix=(40)/(20)-(41)/(20)=(-1)/(20)\\\\\\a=(1)/(4p)=(1)/(4((-1)/(20)))=(1)/(-(1)/(5))=-5

Now input a = -5 and (h, k) = (-1, 2) into the equation y = a(x - h)² + k

y = -5(x + 1)² + 2

User Trung Duong
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories