Answer :
⠀
Explanation :
- This is Right Angled Triangle.
⠀
Solution :
- We'll solve this using the Pythagorean Theorem.
where,
- XY (3 yd) is the perpendicular
We know that,
![{\longrightarrow \pmb{\mathbb {\qquad (XZ) {}^(2) = (XY) {}^(2) +( YZ) {}^(2) }}} \\ \\](https://img.qammunity.org/2023/formulas/mathematics/high-school/d28d62soiiiihk9kucaxhaedj54begnlhw.png)
Now, we will substitute the given values in the formula :
![{\longrightarrow \sf{\pmb {\qquad (XZ) {}^(2) = (3) {}^(2) +( 14) {}^(2) }}} \\ \\](https://img.qammunity.org/2023/formulas/mathematics/high-school/qv01h85l9pxamscdgnbznwflbcn0bz5vir.png)
We know that, (3)² = 9 and (14)² = 196. So,
![{\longrightarrow \sf{\pmb {\qquad (XZ) {}^(2) = 9 +196 }}} \\ \\](https://img.qammunity.org/2023/formulas/mathematics/high-school/qh3apmpofxmf7plzw2prfm5tbujthwlhbw.png)
Now, adding 9 and 196 we get :
![{\longrightarrow \sf{\pmb {\qquad (XZ) {}^(2) = 205 }}} \\ \\](https://img.qammunity.org/2023/formulas/mathematics/high-school/u8yr43k0ile4s4l1lcpyeufv53s2igff9v.png)
Now, we'll take the square root of both sides to remove the square from XZ :
![{\longrightarrow \sf{\pmb {\qquad \sqrt{(XZ) {}^(2)} = √(205 )}}} \\ \\](https://img.qammunity.org/2023/formulas/mathematics/high-school/zqg17e7mxdg7g0mpzttz6diwbc73b6r1ku.png)
When we take the square root of (XZ)² , it becomes XZ,
![{\longrightarrow \sf{\pmb {\qquad XZ = √(205 )}}} \\ \\](https://img.qammunity.org/2023/formulas/mathematics/high-school/n1fr62sfhae15kf430zovqb2vmzv6xu2l3.png)
We know that, square root of 205 is 14.317 (approx) .
![{\longrightarrow { \mathbb{\pmb {\qquad XZ }}}} \approx \pmb{\mathfrak{14.317 } }\\ \\](https://img.qammunity.org/2023/formulas/mathematics/high-school/m4lk183i2bmgq7n5qhv43cae8b8pjpynfi.png)
So,
- The measure of the missing side (XZ) is 14.3 (Rounded to nearest tenth)