55.0k views
1 vote
A and b are positive integers and a–b = 3. Evaluate the following: 125^(1/3a)/25^(1/2b)

User Aleatha
by
4.9k points

2 Answers

5 votes

Answer:

125

Explanation:


\frac{125^{(1)/(3)a}}{25^{(1)/(2)b}} =


= \frac{(5^3)^{(1)/(3)a}}{(5^2)^{(1)/(2)b}}


= \frac{5^{3 * (1)/(3)a} }{5^{2 * (1)/(2)b}}


= \frac{5^{(3)/(3)a}}{5^{(2)/(2)b}}


= (5^a)/(5^b)


= 5^(a - b)


= 5^3


= 125

User Ergin Ersoy
by
4.2k points
4 votes

Value of
(125^(1/3a))/(25^(1/2b)) is
\frac{1}{125^{((1)/(ab))}} .

Explanation:

Here we have , a-b=3 . We need to evaluate : 125^(1/3a)/25^(1/2b) or ,


(125^(1/3a))/(25^(1/2b)) . Let's find out:


(125^(1/3a))/(25^(1/2b))


(5^3(^(1/3a)))/(5^2(^(1/2b)))


(5(^(3/3a)))/(5(^(3/2b)))


5^{((1)/(a)-(1)/(b))} = 5^{((b-a)/(ab))}


5^{((-3)/(ab))}


\frac{1}{125^{((1)/(ab))}}

Therefore, Value of
(125^(1/3a))/(25^(1/2b)) is
\frac{1}{125^{((1)/(ab))}} .

User NicoAdrian
by
5.2k points