89.8k views
16 votes
Find the derivative.


(d)/(dx) \left[ \sin^(-1)(\cos e^x)-\cos^(-1)(\sin e^x) \right]

User Gnomical
by
8.4k points

1 Answer

5 votes


\qquad\qquad\huge\underline{{\sf Answer}}


\qquad \tt \dashrightarrow \:(d)/(dx) \left[ \sin^(-1)(\cos e^x)-\cos^(-1)(\sin e^x) \right]


\qquad \tt \dashrightarrow \:(d)/(dx) \sin^(-1)(\cos e^x) - (d)/(dx)\cos^(-1)(\sin e^x)


\qquad \tt \dashrightarrow \: \bigg(\frac{1}{ \sqrt{1 - ( \cos( {e}^(x) ) ) {}^(2) } } * - \sin( {e}^(x) ) * {e}^(x) \bigg) - \bigg( - \frac{1}{ \sqrt{1 - ( \sin( {e}^(x) )) {}^(2) } } * \cos( {e}^(x) ) * {e}^(x) \bigg)


\qquad \tt \dashrightarrow \: \bigg(\frac{ - {e}^(x) \sin( {e}^(x) ) }{ \sqrt{1 - ( \cos( {e}^(x) ) ) {}^(2) } } \bigg) - \bigg( - \frac{ {e}^(x) \cos( {e}^(x) ) }{ \sqrt{1 - ( \sin( {e}^(x) )) {}^(2) } } \bigg)


\qquad \tt \dashrightarrow \: \frac{ - {e}^(x) \sin( {e}^(x) ) }{ \sqrt{1 - \cos {}^(2) ( {e}^(x) ) {}^{} } } + \frac{ {e}^(x) \cos( {e}^(x) ) }{ \sqrt{1 - \sin {}^(2) ( {e}^(x) ) {}^{} } }


\qquad \tt \dashrightarrow \: \frac{ - {e}^(x) \sin( {e}^(x) ) }{ \sqrt{ { \sin}^(2) ( {e}^(x) ) {}^{} } } + \frac{ {e}^(x) \cos( {e}^(x) ) }{ \sqrt{ \cos {}^(2) ( {e}^(x) ) {}^{} } }


\qquad \tt \dashrightarrow \: \frac{ - {e}^(x) \sin( {e}^(x) ) }{ { { \sin}^{} ( {e}^(x) ) {}^{} } } + \frac{ {e}^(x) \cos( {e}^(x) ) }{ { \cos {}^{} ( {e}^(x) ) {}^{} } }


\qquad \tt \dashrightarrow \: - {e}^(x) + {e}^(x)


\qquad \tt \dashrightarrow \:0

I hope this helps, if you find any problem with steps or got a mistake in my explanation then feel free to ask me ~

User Jarred
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories