a. In order for
to be a proper density function, its integral over its domain must evaluate to 1:
![\displaystyle\int_(-\infty)^\infty f(x)\,\mathrm dx=k\int_0^1(1-x)\,\mathrm dx=\frac k2=1\implies k=2](https://img.qammunity.org/2021/formulas/mathematics/college/8334jl005vnoaije0r16viuhh7fxtsbx4q.png)
also must be non-negative over its support, which is the case here.
I assume the instruction regarding the distribution function doesn't apply to parts (b) and (c).
(b) Integrate the density over the interval [0.1, 0.2]:
![P(0.1<x<0.2)=\displaystyle\int_(0.1)^(0.1)2(1-x)\,\mathrm dx=0.17](https://img.qammunity.org/2021/formulas/mathematics/college/zlwyni9q2vk3gbjd69n1k5lhj0i7ufwczn.png)
(c) Integrate the density over the interval [0.5, 1]:
![P(X>0.5)=\displaystyle\int_(0.5)^12(1-x)\,\mathrm dx=0.25](https://img.qammunity.org/2021/formulas/mathematics/college/2951xv6swd8nmd3nbu5eyraf6djfvauj9w.png)
The distribution function is obtained by integrating the density:
![F(x)=\displaystyle\int_(-\infty)^xf(t)\,\mathrm dt=\begin{cases}0&\text{for }x<0\\2x-x^2&\text{for }0\le x<1\\1&\text{for }x\ge1\end{cases}](https://img.qammunity.org/2021/formulas/mathematics/college/vfpxzj3zdikfv3tukyciwzmp71y9yf6z9q.png)
(d) Using the distribution function, we have
![P(X<0.3)=F(0.3)=0.51](https://img.qammunity.org/2021/formulas/mathematics/college/qdjzkwg7goe3uq550mh26gygam6rw9q4cz.png)
(e) Using
again, we get
![P(0.4<X<0.6)=P(X<0.6)-P(X<0.4)=F(0.6)-F(0.4)=0.84-0.64=0.2](https://img.qammunity.org/2021/formulas/mathematics/college/tzcfr5aamwal47yo7z5jil9usfd0rslirq.png)
(f) The mean is
![E[X]=\displaystyle\int_(-\infty)^\infty x\,f(x)\,\mathrm dx=\int_0^12x(1-x)\,\mathrm dx=\frac13](https://img.qammunity.org/2021/formulas/mathematics/college/s5d5jzcpbodbv77zeaoe1sq2kakk1hcxjt.png)
The variance is
![V[X]=E[(X-E[X])^2]=E[X^2]-E[X]^2](https://img.qammunity.org/2021/formulas/mathematics/college/e2e5hg9sy4v38tj5q4nl365utlyba8oawi.png)
where
![E[X^2]=\displaystyle\int_(-\infty)^\infty x^2\,f(x)\,\mathrm dx=\int_0^12x^2(1-x)\,\mathrm dx=\frac16](https://img.qammunity.org/2021/formulas/mathematics/college/ylcy9cpbt9li0vri82hql39m3h3czxi3tj.png)
so that the variance is
![V[X]=\frac16-\left(\frac13\right)^2=\frac1{18}](https://img.qammunity.org/2021/formulas/mathematics/college/irqsm9lbg5ywec953bp5ktwcyaylf5xd1z.png)