219k views
5 votes
Evaluate the attached integral. The answer I got was
2x^2 -x+5ln\left|x-2\right|+(1)/(3)\left(x-2\right)^3-6+C , I'm not entirely sure if my method was correct though.

Evaluate the attached integral. The answer I got was 2x^2 -x+5ln\left|x-2\right|+(1)/(3)\left-example-1

2 Answers

3 votes

Answer:


=2x^2-x+5\ln \left|x-2\right|+(1)/(3)\left(x-2\right)^3-6+C

Explanation:


\int (x^3-2x^2+3x-1)/(x-2)dx


(x^3-2x^2+3x-1)/(x-2)\\


=(x^3)/(x-2)-(2x^2)/(x-2)+(3x)/(x-2)-(1)/(x-2)


=\int (x^3)/(x-2)dx-\int (2x^2)/(x-2)dx+\int (3x)/(x-2)dx-\int (1)/(x-2)dx


\int (x^3)/(x-2)dx


=\int (\left(u+2\right)^3)/(u)du; u=x-2


(\left(u+2\right)^3)/(u)


\left(u+2\right)^3


=u^3+3u^2\cdot \:2+3u\cdot \:2^2+2^3


=u^3+6u^2+12u+8


=(u^3+6u^2+12u+8)/(u)


(u^3+6u^2+12u+8)/(u)=(u^3)/(u)+(6u^2)/(u)+(12u)/(u)+(8)/(u)


=u^2+(6u^2)/(u)+(12u)/(u)+(8)/(u)


=u^2+6u+(12u)/(u)+(8)/(u)


=u^2+6u+12+(8)/(u)


=\int \:u^2+6u+12+(8)/(u)du


=\int \:u^2du+\int \:6udu+\int \:12du+\int (8)/(u)du


\int \:u^2du


=(u^(2+1))/(2+1)


=(u^3)/(3)


\int \:6udu


=6\cdot \int \:udu


=6\cdot (u^(1+1))/(1+1)


=3u^2


\int \:12du


=12u


\int (8)/(u)du


=8\cdot \int (1)/(u)du


=8\ln \left|u\right|


=(u^3)/(3)+3u^2+12u+8\ln \left|u\right|


=(\left(x-2\right)^3)/(3)+3\left(x-2\right)^2+12\left(x-2\right)+8\ln \left|x-2\right|


=3x^2+8\ln \left|x-2\right|+(1)/(3)\left(x-2\right)^3-12


\int (2x^2)/(x-2)dx


=2\cdot \int (x^2)/(x-2)dx


=2\cdot \int (\left(u+2\right)^2)/(u)du


\left(u+2\right)^2


=u^2+4u+4


=(u^2+4u+4)/(u)


(u^2+4u+4)/(u)=(u^2)/(u)+(4u)/(u)+(4)/(u)


=u+(4u)/(u)+(4)/(u)


=2\cdot \int \:u+4+(4)/(u)du


=2\left(\int \:udu+\int \:4du+\int (4)/(u)du\right)


\int \:udu


=(u^(1+1))/(1+1)


=(u^2)/(2)


\int \:4du


=4u


\int (4)/(u)du


=4\cdot \int (1)/(u)du


=4\ln \left|u\right|


=2\left((u^2)/(2)+4u+4\ln \left|u\right|\right)


=2\left((\left(x-2\right)^2)/(2)+4\left(x-2\right)+4\ln \left|x-2\right|\right)


2\left((\left(x-2\right)^2)/(2)+4\left(x-2\right)+4\ln \left|x-2\right|\right)


=2\cdot (\left(x-2\right)^2)/(2)+2\cdot \:4\left(x-2\right)+2\cdot \:4\ln \left|x-2\right|


=x^2+4x+8\ln \left|x-2\right|-12


\int (3x)/(x-2)dx


=3\cdot \int (x)/(x-2)dx


=3\cdot \int (u+2)/(u)du


=3\cdot \int \:1+(2)/(u)du


=3\left(\int \:1du+\int (2)/(u)du\right)


\int \:1du


=u


\int (2)/(u)du


=2\cdot \int (1)/(u)du


=2\ln \left|u\right|


=3\left(u+2\ln \left|u\right|\right)


=3\left(x-2+2\ln \left|x-2\right|\right)


\int (1)/(x-2)dx


=\int (1)/(u)du


=\ln \left|u\right|


=\ln \left|x-2\right|


3x^2+8\ln \left|x-2\right|+(1)/(3)\left(x-2\right)^3-12-\left(x^2+4x+8\ln \left|x-2\right|-12\right)\\+3\left(x-2+2\ln \left|x-2\right|\right)-\ln \left|x-2\right|


=2x^2-x+5\ln \left|x-2\right|+(1)/(3)\left(x-2\right)^3-6


=2x^2-x+5\ln \left|x-2\right|+(1)/(3)\left(x-2\right)^3-6+C

User Vincentge
by
3.9k points
0 votes

Answer:

(⅓)x³ + 3x + 5ln|x - 2| + c

Explanation:

(x³ - 2x² + 3x - 6 + 5)/(x - 2)

[x²(x - 2) + 3(x - 2) + 5]/(x - 2)

x² + 3 + 5/(x - 2)

Integral:

⅓x³ + 3x + 5ln|x - 2| + c

User Anjan Talatam
by
4.8k points