Given:
The given triangle is a right angled triangle.
The length of the hypotenuse is 17 units.
One of the legs of the triangle measure x units.
The one of the angles of the right triangle is 60°
We need to determine the value of x.
Value of x:
The value of x can be determined using the trigonometric ratio.
Thus, we have;
![sin \ \theta=(opp)/(hyp)](https://img.qammunity.org/2021/formulas/mathematics/high-school/nkldre8lgjlz53znju6dbblh6iiu7nhh3e.png)
Substituting
,
and
in the above formula, we get;
![sin \ 60^(\circ)=(x)/(17)](https://img.qammunity.org/2021/formulas/mathematics/college/qsltajm6z14lbvf4q45n3p4u24dy5zz3eg.png)
Multiplying both sides of the equation by 17, we get;
![sin \ 60^(\circ) * 17=x](https://img.qammunity.org/2021/formulas/mathematics/college/cp2yf9pxg5rzybhvnh9x5ki80xf5d0qt5t.png)
Simplifying, we get;
![0.866 * 17=x](https://img.qammunity.org/2021/formulas/mathematics/college/ptjifn2jbd86rdnyet2tjhgh92muizagql.png)
Multiplying, we get;
![14.722=x](https://img.qammunity.org/2021/formulas/mathematics/college/bgouwjc11w5n939pek69jorccdjh8qczy6.png)
Rounding off to the nearest tenth, we get;
![14.7=x](https://img.qammunity.org/2021/formulas/mathematics/college/f1k2fjbw85gh32edvpgul7giq76gnp95bk.png)
Thus, the value of x is 14.7