Given:
![$(x+4)/(x-1)-(5)/(x^(2)-1)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/dfd7asr2ap4ys3gu2vqn6c10pggfyvgw88.png)
To find:
The simplified rational expression by subtraction.
Solution:
Let us factor
. It can be written as
.
using algebraic identity.
![$(x+4)/(x-1)-(5)/(x^(2)-1)=(x+4)/(x-1)-(5)/((x+1)(x-1))](https://img.qammunity.org/2021/formulas/mathematics/middle-school/4zv4v0x9w63peakb4izhyia43jqlg271gm.png)
LCM of
![x-1,(x+1)(x-1)=(x+1)(x-1)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/rc0hgmtstni8v30i58ae56uovvr621nj55.png)
Make the denominators same using LCM.
Multiply and divide the first term by (x + 1) to make the denominator same.
![$=((x+4)(x+1))/((x-1)(x+1))-(5)/((x-1)(x+1))](https://img.qammunity.org/2021/formulas/mathematics/middle-school/wvkayquhehjwyci4qtebd3sdv3fkzini5a.png)
Now, denominators are same, you can subtract the fractions.
![$=((x+4)(x+1)-5)/((x-1)(x+1))](https://img.qammunity.org/2021/formulas/mathematics/middle-school/9krdoh5xl93txijihyguu0m9iueuohlstd.png)
Expand
.
![$=(x^2+4x+x+4-5)/((x-1)(x+1))](https://img.qammunity.org/2021/formulas/mathematics/middle-school/gr0h2ojbtcitad9w8z3ym048fknqhjx2zh.png)
![$=(x^(2)+5 x-1)/((x-1)(x+1))](https://img.qammunity.org/2021/formulas/mathematics/middle-school/m2kc8irsh8h5ggn5504ksfn3yov1a5e0qr.png)
![$(x+4)/(x-1)-(5)/(x^(2)-1)=(x^(2)+5 x-1)/((x-1)(x+1))](https://img.qammunity.org/2021/formulas/mathematics/middle-school/rhummrfbd97xfbnb9wlahy2qn8atn8f0t0.png)