Answer:
Length of pipe
meter
Step-by-step explanation:
Speed of a transverse wave on a string
![v = \sqrt{(F)/(\mu) }](https://img.qammunity.org/2021/formulas/physics/high-school/iz037m7psc5vog1e8gui318hj7na3138p1.png)
where F is the tension in string and
is the mass per unit length
Thus,
![\mu = (m)/(L)](https://img.qammunity.org/2021/formulas/physics/high-school/hn6qycj1403m8v1r5x9x484y7upb8v3guh.png)
Substituting the given values we get -
![\mu = (7.25 * 10^(-3))/(0.62)\\mu = 0.0117 (Kg)/(m)](https://img.qammunity.org/2021/formulas/physics/high-school/6zvi7p5o055i9r9oz0tn3hpjnp5nqvq110.png)
Speed of a transverse wave on a string
![v = \sqrt{(4510)/(0.0117) } \\v = 620.86 (m)/(s)](https://img.qammunity.org/2021/formulas/physics/high-school/daoew7tr3qgg9gbogwnohfu2746ntxq6a7.png)
For third harmonic wave , frequency is equal to
![f = (nv)/(2L)](https://img.qammunity.org/2021/formulas/physics/high-school/mdrxdfrjnyis2e1dhdccioyq27t9b1bvce.png)
Substituting the given values, we get -
![f = (3 * 620.86)/(2 * 0.62) \\f = 1502.08](https://img.qammunity.org/2021/formulas/physics/high-school/oz6galxelovgakzvu399gsgvjboyx9tv6b.png)
Length of pipe
![L = (nv)/(4 f)](https://img.qammunity.org/2021/formulas/physics/high-school/r0z7ny4hgkz491y07ky7k4w2swg8pk0qbo.png)
Substituting the given values we get
for first harmonic wave
![L = (344* 1)/(4*1502.08) \\L = 0.057](https://img.qammunity.org/2021/formulas/physics/high-school/xy47et0jv6ayahuisudfi3mh4poqqn3r9r.png)
Length of pipe
meter