94.6k views
4 votes
Solve for x with steps

logb(8)+logb(x^2)=logb(x)

User Jahmar
by
4.6k points

1 Answer

5 votes

Answer:


x=(1)/(8)

Explanation:


\log _b\left(8\right)+\log _b\left(x^2\right)=\log _b\left(x\right)


\log _b\left(8\right)+2\log _b\left(x\right)=\log _b\left(x\right)


\log _b\left(8\right)+2\log _b\left(x\right)-\log _b\left(8\right)=\log _b\left(x\right)-\log _b\left(8\right)


2\log _b\left(x\right)=\log _b\left(x\right)-\log _b\left(8\right)


2\log _b\left(x\right)-\log _b\left(x\right)=\log _b\left(x\right)-\log _b\left(8\right)-\log _b\left(x\right)


\log _b\left(x\right)=-\log _b\left(8\right)


\log _b\left(x\right)=-3\log _b\left(2\right)


x=b^(-3\log _b\left(2\right))
x=b^(-3\log _b\left(2\right))


b^(-3\log _b\left(2\right))


=\left(b^(\log _b\left(2\right))\right)^(-3)


=2^(-3)


=(1)/(8)


x=(1)/(8)

User Schanckopotamus
by
3.9k points