Answer:
Therefore the dimensions of the rectangular garden are 23.42 ft by 20.5 ft.
Explanation:
Given that,
A rectangular garden of area 480 square feet.
Let length of the rectangular garden be x which is surrounded by fence and width of the rectangular garden be y.
Then xy is the area of the given rectangular garden .
Then,
xy= 480
![\Rightarrow y=(480)/(x)](https://img.qammunity.org/2021/formulas/mathematics/college/3l66cirshfy29z42owaru4lgc66s32gw5m.png)
The length of the tree sides which are surrounded by brick wall is = 2y+x.
The cost for the brick wall is =Length×cost per feet= $12(2y+x)
The cost for the fencing is =Length×cost per feet= $ 9x
![\therefore C=12(2y+x)+9x](https://img.qammunity.org/2021/formulas/mathematics/college/cay3cc2lawuvrfu3abkgsjgzfxj8q6gm5v.png)
Now putting
![y=(480)/(x)](https://img.qammunity.org/2021/formulas/mathematics/college/68tjnhy751znpdeornuhusynk1dmisqcrf.png)
![\therefore C=12(2.(480)/(x)+x)+9x](https://img.qammunity.org/2021/formulas/mathematics/college/7a0utcrldaoe2lyzow6hggd0me2l7egcvg.png)
![\Rightarrow C=(11520)/(x)+21x](https://img.qammunity.org/2021/formulas/mathematics/college/m7yjwhbgb596muofqqtolbmy2x3w1onv9v.png)
Differentiating with respect to x
![C'=-(11520)/(x^2)+21](https://img.qammunity.org/2021/formulas/mathematics/college/knb36lisnibpjkp339h3ebrylx95oac5z9.png)
Again differentiating with respect to x
![C''=(23040)/(x^3)](https://img.qammunity.org/2021/formulas/mathematics/college/504ofyk7j5ev1vctr2uvr6orvljh1xpk7o.png)
Now we set C'=0
![\therefore-(11520)/(x^2)+21=0](https://img.qammunity.org/2021/formulas/mathematics/college/94hkzruqsr9bxsnbqjsduxsx84z6cmnenq.png)
![\Rightarrow(11520)/(x^2)=21](https://img.qammunity.org/2021/formulas/mathematics/college/aug3t9lnveb0xkunws93r71ruhn4c65wud.png)
![\Rightarrow x^2=(11520)/(21)](https://img.qammunity.org/2021/formulas/mathematics/college/972f6x4z2yv1oyguo4neq5xdjbi7gcb39b.png)
![\Rightarrow x\approx 23.42](https://img.qammunity.org/2021/formulas/mathematics/college/354wupve9iqq1dl5brhoc91fydda85wxlb.png)
.
Since at x=23.42,C''>0. So at x=23.42, the total cost will be minimum.
The width of the rectangular garden is
![y=(480)/(x)](https://img.qammunity.org/2021/formulas/mathematics/college/68tjnhy751znpdeornuhusynk1dmisqcrf.png)
![=(480)/(23.42)](https://img.qammunity.org/2021/formulas/mathematics/college/3jn2d5mua3o95ar5pco8d7yst88cic0n9t.png)
![\approx 20.5](https://img.qammunity.org/2021/formulas/mathematics/college/zfv9eze2a657mkwti7yeh88ayfjvx96sgl.png)
Therefore the dimensions of the rectangular garden are 23.42 ft by 20.5 ft.
The cost of the material is
![C=(11520)/(x)+21x](https://img.qammunity.org/2021/formulas/mathematics/college/cu6kti65p0q315das2q3h6hvb1xdg7yvlw.png)
![=(11520)/(23.42)+21* 23.42](https://img.qammunity.org/2021/formulas/mathematics/college/yett0rburvyk4uw1tk1fg30qnjtct4asdl.png)
=$983.70