Answer:
Length=15 cm
Width=13 cm
Explanation:
-Let x be the width dimension, the length will be (x-2)
-The area of a rectangle is given by the formula;
![A=lw](https://img.qammunity.org/2021/formulas/mathematics/middle-school/d9mfw1kn202ewxei9fp0lhh3q6jf79i72v.png)
#We substitute the length and width values and equate to the given area:
![A=lw\\195=x* (x-2)\\\\195=x^2-2x](https://img.qammunity.org/2021/formulas/mathematics/high-school/ax7unvhjyyfmda4o9gz7qqkjtsci2bwlrb.png)
#Rewrite as a quadratic and solve for x:
![195=x^2-2x\\\\x^2-2x-195=0\\\\\# Use \ the \ Quadratic\ formula \ to\ solve:\\\\x_1,x_2=(-b\pm√(b^2-4ac))/(2a)\\\\\therefore x_1,x_2=(-(-2)\pm√((-2)^2-4* 1*(-195)))/(2* 1)\\\\\\x_1=15, x_2=-13](https://img.qammunity.org/2021/formulas/mathematics/high-school/qo3j6s26w1532i0cvbmcqz3wf6un7ebsoy.png)
Since dimensions are always positve, the x value is 15
x=15
x=13
Hence, the dimensions of the rectangle are length=15 cm and width=13 cm