Answer:
-5 and 4
Explanation:
Use a system of equations. Let
be the first number and
be the second number
The first equation will be a product,
, and the second will be a sum,
![x+y=-1](https://img.qammunity.org/2021/formulas/mathematics/high-school/jstpes1enfhphqetjbro9wdo1slksqhax8.png)
Solve the second equation for
, which results in
, and substitute into the first equation.
![(-1-y)y=-20](https://img.qammunity.org/2021/formulas/mathematics/high-school/mhvf29mltpiqfx4bnjws0dlx4wpubfj5ie.png)
Distribute
![-y-y^(2) =-20](https://img.qammunity.org/2021/formulas/mathematics/high-school/6q0n3iypozduud3sa8es4j7ezd2u5avfqc.png)
Set equal to zero
![y^(2)+y-20=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/8o27gkd9i6ragvf3r5e1jah93g1glkndhx.png)
Factor
![(y+5)(y-4)=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/fgfwkt5erydsirqtu9lz2pgh9fdfpst0hs.png)
So
or
![y=4](https://img.qammunity.org/2021/formulas/mathematics/college/m1jhp5ycpnzo8s03nldtr3h8xv8z64upeu.png)
When
, then
or
![x=4](https://img.qammunity.org/2021/formulas/mathematics/middle-school/a1fs70p5exgs68ljexkqkiueya3liaz52t.png)
When
, then
or
![x=-5](https://img.qammunity.org/2021/formulas/mathematics/middle-school/3ha445gmgv16zeqn79wo6b4s2qppd1uebl.png)