45.1k views
4 votes
What’s the differential equation of

dy/dx = y^2 (6-2x)


With initial condition that when x=3, y=1/4

1 Answer

1 vote

Answer:


y=(1)/(x^(2)-6x+13 )

Explanation:

We have given,


(dy)/(dx)=y^(2)(6-2x)

and initial condition
x=3,\ y=(1)/(4)

Now,


(dy)/(dx)=y^(2)(6-2x)

Rearranging the variables, we get


(dy)/(y^(2) )=(6-2x).dx

Applying integration both sides, we get


\int\ {(dy)/(y^(2) ) } \,=\int\ {(6-2x).} \, dx


(-1)/(y) =6x-(2x^(2) )/(2)


(-1)/(y)=6x-x^(2) +C

Putting the initial condition (i.e.,
x=3,\ y=(1)/(4)), we get


-4=6*3-(3)^(2)+C


-4=18-9+C


C=-13

We have,
(-1)/(y)=6x-x^(2) +C

now putting the value of
C in above equation, we get


(-1)/(y)=6x-x^(2) -13


(1)/(y)=-6x+x^(2) +13


y=(1)/(x^(2)-6x+13 )

User Nikano
by
4.7k points