Answer:
![R= \sqrt{F^2_(Rx) +F^2_(Ry)}= √((-52.286)^2 +(60.39)^2) = 79.880 m](https://img.qammunity.org/2021/formulas/physics/college/gdr2spggvzdh3knrukfbok8ppfzypzi16i.png)
And the angle would be:
![\theta= tan^(-1) ((F_(Ry))/(F_(Rx))) =tan^(-1) ((60.39)/(-52.286))= -49.11](https://img.qammunity.org/2021/formulas/physics/college/x10ekalakhjd3kk0o496duiypkae7qyhn5.png)
So the final position would be 79.880m and with an angle of
Southwest
Step-by-step explanation:
For this case we can use the method of components to solve this problem. And we have the following info given.
![u_1 = 45m \theta_1 = 90](https://img.qammunity.org/2021/formulas/physics/college/347fs6e5n62ozmbj50yl0mlmmsja1skmr2.png)
![u_2 = 45m \theta_2 = 160](https://img.qammunity.org/2021/formulas/physics/college/jxnqxgen7ylx4kdsjy5xj8ymjsxcl84m5n.png)
![u_3 = 10m \theta_3 = 180](https://img.qammunity.org/2021/formulas/physics/college/o9jgl9pf9a2xyayrk8r35qzkv4f548pa5w.png)
Now we can find the components for each vector like this:
![u_(x_1) = 45m *cos 90 =0 , u_(y_1)= 45m *sin 90 =45m](https://img.qammunity.org/2021/formulas/physics/college/al6wlfnzho3asycqau42c3x49cry1mtgp6.png)
![u_(x_2) = 45m *cos 160 =-42.286 , u_(y_2)= 45m *sin 160 =15.39m](https://img.qammunity.org/2021/formulas/physics/college/hy9zvcuaw3cpz8sz7rbehe7bzujlb7zafx.png)
![u_(x_3) = 10m *cos 180 =-10 , u_(y_3)= 10m *sin 180 =0m](https://img.qammunity.org/2021/formulas/physics/college/8s2nmlmqt9lwgx80za34kumhmbyuv50ok5.png)
Now we can find the net vectors on x and y:
![F_(Rx)= 0 -42.286 -10= -52.286 m](https://img.qammunity.org/2021/formulas/physics/college/ladva29y5m2xfbr4ear3hfgzoqnmpalx5m.png)
![F_(Ry)= 45 +15.39 +0 m = 60.39 m](https://img.qammunity.org/2021/formulas/physics/college/qqynef5nx6kucug47lct1y6m0n14yteyi8.png)
And the resultant position would be:
![R= \sqrt{F^2_(Rx) +F^2_(Ry)}= √((-52.286)^2 +(60.39)^2) = 79.880 m](https://img.qammunity.org/2021/formulas/physics/college/gdr2spggvzdh3knrukfbok8ppfzypzi16i.png)
And the angle would be:
![\theta= tan^(-1) ((F_(Ry))/(F_(Rx))) =tan^(-1) ((60.39)/(-52.286))= -49.11](https://img.qammunity.org/2021/formulas/physics/college/x10ekalakhjd3kk0o496duiypkae7qyhn5.png)
So the final position would be 79.880m and with an angle of
Southwest