194k views
3 votes
Find the quotient of these Complex Numbers.


(5-i) / (3+2i)

User Bettyann
by
5.2k points

1 Answer

2 votes

Let the given complex number

z = x + ix =
(5-i)/(3+2i)

We have to find the standard form of complex number.

Solution:

x + iy =
(5-i)/(3+2i)

Rationalising numerator part of complex number, we get

x + iy =
(5-i)/(3+2i)* (3-2i)/(3-2i)

⇒ x + iy =
((5-i)(3-2i))/(3^2-(2i)^2)

Using the algebraic identity:

(a + b)(a - b) =
a^(2) -
b^(2)

⇒ x + iy =
(15-10i-3i+2i^2)/(9-4i^2)

⇒ x + iy =
(15-13i+2(-1))/(9-4(-1)) [ ∵
i^(2) =-1]

⇒ x + iy =
(15-2-13i)/(9+4)

⇒ x + iy =
(13-13i)/(13)

⇒ x + iy =
(13(1-i))/(13)

⇒ x + iy = 1 - i

Thus, the given complex number in standard form as "1 - i".

User Rajamohan S
by
4.8k points