Given:
In ΔPQR, the measure of ∠R=90°, the measure of ∠P=52°, and QR = 9.6 feet.
We need to determine the length of RP.
Length of RP:
The image of the triangle PQR is attached below.
Using the figure, the length of RP can be determined using the trigonometric ratio,
![tan \ \theta=(opp)/(adj)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/1q74f7o9onkpg2qu4j2w6r3q2gfz3mtnbo.png)
Substituting
,
and
![adj=RP](https://img.qammunity.org/2021/formulas/mathematics/middle-school/zesizbfljnc4ujpk41sk4m4xx04cyy7fao.png)
Thus, we get;
![tan \ 52^(\circ)=(QR)/(RP)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/sxssj9sergwsvczs3x3ohvbwfqv1vmh4wy.png)
Substituting the values, we get;
![1.2799=(9.6)/(RP)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/u3yfqip7hl0y5slrzut4crfwwhwwja1xhq.png)
Simplifying, we get;
![RP=(9.6)/(1.2799)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/l5w2ck2g6avd8bsd5cmdttv8hqsw8hv79f.png)
Dividing, we get;
![RP=7.5](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ijhsf68yvxo7f0cihuwf6d6ankmo6ieij6.png)
Thus, the length of RP is 7.5 feet.