Given:
One secant is x+ 5 and 8
Other secant is x + 1 and 9
To find:
The value of x
Solution:
If two secant segments intersect outside a circle, then the product of one segment and its external segment is equal to the product of other segment and its external segment.
External segment = 8 + x + 5 = x + 13
Another external segment = 9 + x + 1 = x + 10
![\Rightarrow 8(x+13)=9(x+10)](https://img.qammunity.org/2021/formulas/mathematics/high-school/yzzgzjwe7m9bdys705f3ppl9f0b5o7thws.png)
![\Rightarrow 8x+104=9x+90](https://img.qammunity.org/2021/formulas/mathematics/high-school/e34bzvl9j3yenub2mhu5rde65211lw7q4w.png)
Subtract 90 from both sides.
![\Rightarrow 8x+104-90=9x+90-90](https://img.qammunity.org/2021/formulas/mathematics/high-school/s3fynbsm4whu6aoppwqy8haay53s4dca8y.png)
![\Rightarrow 8x+14=9x](https://img.qammunity.org/2021/formulas/mathematics/high-school/45zeqmnmkqqlq7tp5vwn5glyzws7k0ulvb.png)
Subtract 8x from both sides.
![\Rightarrow 8x+14-8x=9x-8x](https://img.qammunity.org/2021/formulas/mathematics/high-school/n0r1gunxtk3z0pglven943jy6bcjsbeww2.png)
![\Rightarrow 14=x](https://img.qammunity.org/2021/formulas/mathematics/high-school/xvgxtvvl11nq5wrqgnl50krxelmxbp88yi.png)
The value of x is 14.