167k views
3 votes
Find the solution to the differential equation dy/dx = cos(x) / y2 , where y(π/2) = 0.

User Lukaswelte
by
3.1k points

1 Answer

1 vote

Answer:


y=2√(\sin \left(x\right)-1),\:y=-2√(\sin \left(x\right)-1)

Step-by-step explanation:


(dy)/(dx)=(\cos \left(x\right))/(y)2


y'\:=(\cos \left(x\right))/(y)\cdot \:2


yy'\:=2\cos \left(x\right)


yy'\:=2\cos \left(x\right):\quad (y^2)/(2)=2\sin \left(x\right)+c_1


(y^2)/(2)=2\sin \left(x\right)-2


y=2√(\sin \left(x\right)-1),\:y=-2√(\sin \left(x\right)-1)

User John Bartels
by
3.6k points