Given:
![_(11) \bsymbol{C}_(6)](https://img.qammunity.org/2021/formulas/mathematics/high-school/u6kxw2b9uynxepfw05s7i3oneybz0j8gag.png)
To find:
The value of the expression.
Solution:
Formula for
:
![$ _(n) C_(r)=(n !)/(r !(n-r) !) $](https://img.qammunity.org/2021/formulas/mathematics/high-school/fmzn6pcjaja2kbmrqpo5t4iwoi2zu0f74s.png)
Substitute n = 11 and r = 6.
![$ _(11) C_(6)=(11 !)/(6 !(11-6) !) $](https://img.qammunity.org/2021/formulas/mathematics/high-school/m10wpeymprcj61fw7o4220rfy3yaccwi64.png)
![$=(11 !)/(6 ! \cdot 5 !)$](https://img.qammunity.org/2021/formulas/mathematics/high-school/hdhnx93sla34m442x99g6g9wpg4vffkqur.png)
11! = 11 × 10 × 9 × ..... × 2 × 1 also can be written as 11 × 10 × 9 × 8 × 7 × 6!
![$=(11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6!)/(6 ! \cdot 5 !)$](https://img.qammunity.org/2021/formulas/mathematics/high-school/r0j8lh7c9yj862dg50kkgmthb98bq0zk4b.png)
Cancel the common factorials (6!).
![$=(11 \cdot 10 \cdot 9 \cdot 8 \cdot 7)/(5 !)$](https://img.qammunity.org/2021/formulas/mathematics/high-school/f4nb5xi8edp36iap2befzjkrj55j40h0i2.png)
5! = 5 × 4 × 3 × 2 × 1
![$=(11 \cdot 10 \cdot 9 \cdot 8 \cdot 7)/(5 \cdot 4\cdot 3 \cdot 2 \cdot 1)$](https://img.qammunity.org/2021/formulas/mathematics/high-school/uoelr06uvzhyp4yw1h35dhkvxyz6er4s21.png)
![$=(55440)/(120)](https://img.qammunity.org/2021/formulas/mathematics/high-school/6codlzg77cr119g1z6980s3f2frsst9tmj.png)
![=462](https://img.qammunity.org/2021/formulas/mathematics/high-school/1edbyjo3f98r49pzmjd96c68xii7nk2xg5.png)
The value of the expression
is 462.