Answer: 0.147 grams
Step-by-step explanation:
To calculate the moles :
![\text{Moles of} Al=(1.33g)/(27g/mol)=0.049moles](https://img.qammunity.org/2021/formulas/chemistry/college/uh0qrkpnwjix1bbxr3lvty3wv9jakl9tmd.png)
![\text{Moles of} NaOH=(4.25g)/(40g/mol)=0.106moles](https://img.qammunity.org/2021/formulas/chemistry/college/i7i83o4swsr8jwftj4oiq6z4gzc973hllp.png)
According to stoichiometry :
2 moles of
require = 2 moles of
will require=
of
![NaOH](https://img.qammunity.org/2021/formulas/chemistry/college/u9l80o5dbp5uyzi3zvrem9p1bp4fmg46h9.png)
Thus
is the limiting reagent as it limits the formation of product and
is the excess reagent.
As 2 moles of
give = 3 moles of
![H_2](https://img.qammunity.org/2021/formulas/chemistry/middle-school/xt6iguq1271fivz0jt24jzimjl8fald14l.png)
Thus 0.049 moles of
give =
of
![H_2](https://img.qammunity.org/2021/formulas/chemistry/middle-school/xt6iguq1271fivz0jt24jzimjl8fald14l.png)
Mass of
![H_2=moles* {\text {Molar mass}}=0.0735moles* 2g/mol=0.147g](https://img.qammunity.org/2021/formulas/chemistry/college/2wbmekj5m50db5fczhveo90csmkvh17ahv.png)
Thus 0.147 g of
will be produced from the given masses of both reactants.