Answer:
P(A)=1/6
Step-by-step explanation:
The sample space of the two dice is given below:
[1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6]
[2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6]
[3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6]
[4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6]
[5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6]
[6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6]
n(S)=36
Let A be the event that the first die lands on 5
Sample Space of Event A is:
[5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6]
n(A)=6
Therefore:
P(A)=n(A)/n(S)
=6/36
=1/6