Answer:
18.62 m/s
Step-by-step explanation:
Given that:
A liquid with a density of 900 kg/m 3 is stored in a pressurized, closed storage tank.
Diameter of the tank = 10 m
The absolute pressure in the tank above the liquid is 200 kPa = 200, 000 Pa
At pressure of 200 kPa ; the final velocity = 0
Atmospheric pressure at 5cm = 101325 Pa
We are to calculate the initial velocity of a fluid jet when a 5cm diameter orifice is opened at point A?
By using Bernoulli's theorem between the shaded portion in the diagram;
we have:
![Pa \ + \ (1)/(2) \ \delta \ v^2_1 \ + \ \delta gy_1 = P + \delta gy_2](https://img.qammunity.org/2021/formulas/physics/college/9nkj2lgrxin6imyj7pq6iz1mzr4umayusb.png)
![(1)/(2) \ \delta \ v^2_1 \ = P + \delta gy_2 - \ \delta gy_1 - Pa](https://img.qammunity.org/2021/formulas/physics/college/57l6908817eixvxhk8f3xtjz3ykgepk9ab.png)
![(1)/(2) \ \delta \ v^2_1 \ = \delta g(y_2 -y_1 )+ ( P - Pa )](https://img.qammunity.org/2021/formulas/physics/college/ia7jjj033tdmxhk0kqr2gk8n6foa9izmic.png)
![v_1 \ = \sqrt{ \frac {2 \ \delta g(y_2 -y_1 )+ 2 ( P - Pa )}{\delta}}](https://img.qammunity.org/2021/formulas/physics/college/id4hk08zk1tvxzgrtdq0k5qqxwyv37j21q.png)
where;
Pa = atmospheric pressure = 101325 Pa
= density of liquid = 900 kg/m³
= initial velocity = ???
g = 9.8 m/s²
= height of the hole from the buttom
= height of the liquid surface from the button
![v_1 \ = \sqrt{ \frac {2*900*9.8(7 - 0.5 )+ 2 ( 200,000 - 101325 )}{900}}](https://img.qammunity.org/2021/formulas/physics/college/xoqkfblkikfih0en5caxlpzjenp6f2ncx3.png)
![v_1 = 18.62 \ m/s](https://img.qammunity.org/2021/formulas/physics/college/a215ym7qe2sd7ig2eyyxpsywblr9nnu68d.png)
Thus, the initial velocity of the fluid jet = 18.62 m/s