Answer:
20 ft by 10ft
Explanation:
Area of the garden =200 square feet
Let the dimensions of the garden be x and y
Area, xy=200
[TeX]x=\frac{200}{y}[/TeX]
Since one side is already protected by a barn,
Perimeter of the garden=2x+y
[TeX]P(y)=\frac{2X200}{y}+y[/TeX]
[TeX]P(y)=\frac{400}{y}+y[/TeX]
[TeX]P(y)=\frac{400+y^2}{y}[/TeX]
The minimum point of P(y) is the point where its derivative equals zero.
[TeX]P^{1}(y)=\frac{y^2-400}{y^2}[/TeX]
[TeX]\frac{y^2-400}{y^2}=0[/TeX]
[TeX]y^2-400=0[/TeX]
[TeX]y^2=400[/TeX]
y=20feet
Recall:
xy=200
20x=200
x=10feet
The dimensions of the garden that will require minimum fencing is 20 ft by 10ft