67.9k views
0 votes
Space pilot Mavis zips past Stanley at a constant speed relative to him of 0.800c. Mavis and Stanley start timers at zero when the front of Mavis ship is directly above Stanley. When Mavis reads 5.00 s on her timer, she turns on a bright light under the front of her spaceship. (a) Use the Lorentz coordinate transformations to calculate x and tas measured by Stanley for the event of turning the light. (b) Use the time dilation formula to calculate the time interval between the two events (the front of the spaceship passing overhead and turning on the light) as measured by Stanley. Compare to the value of t you calculated in part (a). (c) Multiply the time interval by Mavis speed, both as measured by Stanley, to calculate the distance she has traveled as measured by him when the light turns on. Compare to the value of x you calculated in part (a).

User Webveloper
by
6.9k points

1 Answer

7 votes

Answer:

Step-by-step explanation:

a. The equation of Lorentz transformations is given by:

x = γ(x' + ut')

x' and t' are the position and time in the moving system of reference, and u is the speed of the space ship. x is related to the observer reference.

x' = 0

t' = 5.00 s

u =0.800 c,

c is the speed of light = 3×10⁸ m/s

Then,

γ = 1 / √ (1 - (u/c)²)

γ = 1 / √ (1 - (0.8c/c)²)

γ = 1 / √ (1 - (0.8)²)

γ = 1 / √ (1 - 0.64)

γ = 1 / √0.36

γ = 1 / 0.6

γ = 1.67

Therefore, x = γ(x' + ut')

x = 1.67(0 + 0.8c×5)

x = 1.67 × (0+4c)

x = 1.67 × 4c

x = 1.67 × 4 × 3×10⁸

x = 2.004 × 10^9 m

x ≈ 2 × 10^9 m

Now, to find t we apply the same analysis:

but as x'=0 we just have:

t = γ(t' + ux'/c²)

t = γ•t'

t = 1.67 × 5

t = 8.35 seconds

b. Mavis reads 5 s on her watch which is the proper time.

Stanley measured the events at a time interval longer than ∆to by γ,

such that

∆t = γ ∆to = (5/3)(5) = 25/3 = 8.3 sec which is the same as part (b)

c. According to Stanley,

dist = u ∆t = 0.8c (8.3) = 2 x 10^9 m

which is the same as in part (a)

User Mukul Kumar Jha
by
7.4k points