Answer:
Dimension a = 18 , b= 36 will give a box with a square end the largest volume
Explanation:
Given -
sum of box length and girth (distance around) does not exceed 108 inches.
Let b be the lenth of box and a be the side of square
b + 4a = 108
b = 108 - 4a
Volume of box =
![area * lenth](https://img.qammunity.org/2021/formulas/mathematics/college/pg9csu8917aa7w3v0u07dm8m79aolgnptg.png)
=
![a^2* b](https://img.qammunity.org/2021/formulas/mathematics/college/dpmejx6vclhofl8ibfemyxogfsl26l83tx.png)
V =
![a^2* b](https://img.qammunity.org/2021/formulas/mathematics/college/dpmejx6vclhofl8ibfemyxogfsl26l83tx.png)
puting the value of b
V =
![a^2 ( 108 - 4a )](https://img.qammunity.org/2021/formulas/mathematics/college/lqxuccfy6ei993kt84ctomkz0igzrc3x1r.png)
![V = 108a^2 - 4a^3](https://img.qammunity.org/2021/formulas/mathematics/college/2ehpjfa3o8dgczc1f7t5538qzpsvr8ys7b.png)
To find the maximum value of V
(1) we differentiate it
![\frac{\mathrm{d} V}{\mathrm{d} a} = 216a - 12a^2](https://img.qammunity.org/2021/formulas/mathematics/college/ck4u464fe9y25grmdpt2xp0p4u8iiaruoq.png)
(2)
![\frac{\mathrm{d} V}{\mathrm{d} a} = 0](https://img.qammunity.org/2021/formulas/mathematics/college/fnk6m0ch197ehuj6kan0nkx1epd98qkbjl.png)
= 0
12a ( 18 - a ) =
a = 0 and a = 18
(3) putting the value of a if
= negative then the value for a ,V is maximum
= 216 - 24a
put the value of a = 0 ,
= 216
put the value of a = 18 ,
negative
for the value of a =18 V gives maximum value
Max volume =
= 11664
a = 18 , b = 108 - 4a =
= 36