16.9k views
3 votes
A study1 of 138 penalty shots in World Cup Finals games between 1982 and 1994 found that the goalkeeper correctly guessed the direction of the kick only 41% of the time. The article notes that this is ‘‘slightly worse than random chance."" We use these data as a sample of all World Cup penalty shots ever. Test at a 5% significance level to see whether there is evidence that the percent guessed correctly is less than 50%. The sample size is large enough to use the normal distribution. The standard error from a randomization distribution under the null hypothesis is SE=0.043.

User John Simon
by
5.4k points

1 Answer

3 votes

Answer:


z=\frac{0.41 -0.5}{\sqrt{(0.5(1-0.5))/(138)}}=-2.115


p_v =P(z<-2.115)=0.017

So the p value obtained was a very low value and using the significance level given
\alpha=0.05 we have
p_v<\alpha so we can conclude that we have enough evidence to reject the null hypothesis, and we can said that at 5% of significance the proportion of interest is significantly lower than 0.5.

Explanation:

Data given and notation

n=138 represent the random sample taken


\hat p=0.41 estimated proportion of interest


p_o=0.5 is the value that we want to test


\alpha=0.05 represent the significance level

Confidence=95% or 0.95

z would represent the statistic (variable of interest)


p_v represent the p value (variable of interest)

Concepts and formulas to use

We need to conduct a hypothesis in order to test the claim that the true proportions is lower than 0.5 or 505.:

Null hypothesis:
p\geq 0.5

Alternative hypothesis:
p < 0.5

When we conduct a proportion test we need to use the z statistic, and the is given by:


z=\frac{\hat p -p_o}{\sqrt{(p_o (1-p_o))/(n)}} (1)

The One-Sample Proportion Test is used to assess whether a population proportion
\hat p is significantly different from a hypothesized value
p_o.

Calculate the statistic

Since we have all the info requires we can replace in formula (1) like this:


z=\frac{0.41 -0.5}{\sqrt{(0.5(1-0.5))/(138)}}=-2.115

Statistical decision

It's important to refresh the p value method or p value approach . "This method is about determining "likely" or "unlikely" by determining the probability assuming the null hypothesis were true of observing a more extreme test statistic in the direction of the alternative hypothesis than the one observed". Or in other words is just a method to have an statistical decision to fail to reject or reject the null hypothesis.

The significance level provided
\alpha=0.05. The next step would be calculate the p value for this test.

Since is a left tailed test the p value would be:


p_v =P(z<-2.115)=0.017

So the p value obtained was a very low value and using the significance level given
\alpha=0.05 we have
p_v<\alpha so we can conclude that we have enough evidence to reject the null hypothesis, and we can said that at 5% of significance the proportion of interest is significantly lower than 0.5.

User Embedc
by
5.5k points