Given:
DE = (6x - 9) cm
EF = (4x + 4) cm
LM = 14 cm
MN = 16 cm
To find:
The value of x.
Solution:
If three or more parallel lines intersect two transversals, then they cut off the transversals proportionally.
![$\Rightarrow (DE)/(EF) =(LM)/(MN)](https://img.qammunity.org/2021/formulas/mathematics/high-school/zabs80vfu1xy6rvmzmqm3fe18sg5ly93it.png)
![$\Rightarrow (6x-9)/(4x+4) =(14)/(16)](https://img.qammunity.org/2021/formulas/mathematics/high-school/n5wjq847rgpomrnz2lutu2l6t49kf2limn.png)
Do cross multiplication.
![$\Rightarrow 16( {6x-9})=14 ({4x+4} )](https://img.qammunity.org/2021/formulas/mathematics/high-school/l3h5snfanv80dgzvtt2e6r75mnob4jgjih.png)
![$\Rightarrow 96x-144=56 x+56](https://img.qammunity.org/2021/formulas/mathematics/high-school/hq2zb8c1lihgyahmco79sd70o4016su3l5.png)
Add 144 on both sides.
![$\Rightarrow 96x-144+144=56 x+56+144](https://img.qammunity.org/2021/formulas/mathematics/high-school/x93ct2n1nc4gf6m2xl7fzm3mq2h64t62dy.png)
![$\Rightarrow 96x=56 x+200](https://img.qammunity.org/2021/formulas/mathematics/high-school/k7o1cazecvey99jb65r8k8km3csf4s743h.png)
Subtract 56x from both sides.
![$\Rightarrow 96x-56x=56 x+200-56x](https://img.qammunity.org/2021/formulas/mathematics/high-school/8alyxxdt0d4m1cspvpva6s7rnbr832ycfe.png)
![$\Rightarrow 40x=200](https://img.qammunity.org/2021/formulas/mathematics/high-school/eqd5mf4el483enazocagwpil4qlny9s1pc.png)
Divide by 40 on both sides, we get
![$\Rightarrow x=5](https://img.qammunity.org/2021/formulas/mathematics/high-school/k5bo1rn4zcktp4rx9i4cd2ieaa3wk4jp75.png)
The value of x is 5.