74.7k views
1 vote
A radioactive mass emits particles according to a Poisson process at a mean rate of 2 per second. Let T be the waiting time, in seconds, between emissions. a. What is the mean waiting time? b. What is the median waiting time? c. Find P(T > 2). d. Find P(T < 0.1).

1 Answer

1 vote

Answer with Step-by-step explanation:

We are given that


\lambda=2

a.Mean waiting time,
E(T)=(1)/(\lambda)


E(T)=(1)/(2)=0.5 s

b.Median waiting time,
P(T<t_(md))=E(T)=0.5


1-e^{-\lambda t_(md)}=0.5

Where
P(T<t)=1-e^(-\lambda t)


e^{-\lambda t_(md)}=1-0.5=0.5


e^{-2t_(md)}=0.5


-2t_(md)=ln(0.5)


-2t_(md)=-0.693


t_(md)=(0.693)/(2)=0.3465 s

c.P(T>2)=
1-P(T< 2)=1-(1-e^(-2* 2))


P(T>2)=e^(-4)=0.018

d.
P(T<0.1)=1-e^(-2* 0.1)=1-e^(-0.2)=0.181

User Elijah Manor
by
5.3k points