97.8k views
0 votes
What is the measure of each angle

What is the measure of each angle-example-1
User Nilsson
by
4.1k points

1 Answer

5 votes

Given:

Let x and y denote the supplementary angles.

Given that an angle measures 102.8° more than the measure of its supplementary angles.

This can be written in expression as,


y=102.8^(\circ)+x

Measure of two angles:

Since, the two angles are supplementary and the supplementary angles add up to 180°

Thus, we have;


x+y=180^(\circ)

Substituting
y=102.8^(\circ)+x in the above formula, we get;


x+102.8^(\circ)+x=180^(\circ)


2x+102.8^(\circ)=180^(\circ)


2x=77.2^(\circ)


x=38.6^(\circ)

Thus, the measure of one angle is 38.6°

Substituting
x=38.6^(\circ) in the equation
y=102.8^(\circ)+x, we get;


y=102.8^(\circ)+38.6^(\circ)


y=141.4^(\circ)

Thus, the measure of the other angle is 141.4°

Hence, the measure of the two angles are 38.6° and 141.4°

User Diesel
by
4.7k points