Answer:
95% Confidence interval: (5.5,8.5)
Explanation:
We are given the following data in the question:
8,10,8,4,5,7,3,10,8
Sample size,n = 9
Population standard deviation = 2.3
Formula:
![Mean = \displaystyle\frac{\text{Sum of all observations}}{\text{Total number of observation}}](https://img.qammunity.org/2021/formulas/mathematics/college/54r5wdwemf9dfi8shqqjlrjhjx9vkxb7o0.png)
![Mean =\displaystyle(63)/(9) = 7](https://img.qammunity.org/2021/formulas/mathematics/college/xad79dty9508h64zb6dqe3jyd1krub7lmi.png)
Sample mean = 7
95% Confidence interval:
![\mu \pm z_(critical)(\sigma)/(√(n))](https://img.qammunity.org/2021/formulas/mathematics/college/gcmey4zqca2426i7o7znzgkltoqk2gce6t.png)
Putting the values, we get,
![z_(critical)\text{ at}~\alpha_(0.05) = 1.96](https://img.qammunity.org/2021/formulas/mathematics/college/p18nw3z4xiccq4qlatlj3xw3assox3kax4.png)
![7 \pm 1.96((2.3)/(√(9)) ) =7 \pm 1.5 = (5.5,8.5)](https://img.qammunity.org/2021/formulas/mathematics/college/deig15xqaf5w6u06pjgn44hrp2df9bhbzj.png)
is the required confidence interval for population mean.