Answer:
Therefore the required solution is
![f(x)=4x^2-2x+5](https://img.qammunity.org/2021/formulas/mathematics/college/jweb4t9viz54gjxnf9zav9eln2t4ejrp0b.png)
Explanation:
Rule of integration:
[ m is a constant]
Given that,
f''(x) = 8 and initial conditions are f'(1)=6 and f(0)=5
∴f''(x) = 8
Integrating both sides
![\int f''(x) dx=\int 8 dx](https://img.qammunity.org/2021/formulas/mathematics/college/se68fdi700v0g6xsn820mmbgm9niy32t3w.png)
[
is constant of integration]
Initial condition f'(1) =6
![\therefore 6= 8.1+C_1](https://img.qammunity.org/2021/formulas/mathematics/college/wdrdnq8izicackf30rdjjn3m5f6ghviv97.png)
![\Rightarrow C_1=6-8](https://img.qammunity.org/2021/formulas/mathematics/college/oss23nphvq5xp13vlvj3rp2reer2ecapb6.png)
![\Rightarrow C_1=-2](https://img.qammunity.org/2021/formulas/mathematics/college/2ev5ma3vbyqygmkifvmepcsjy712u6se8u.png)
![\therefore f'(x)=8x-2](https://img.qammunity.org/2021/formulas/mathematics/college/s901aulhmv4san8l29bl03sbgszgfj2uy4.png)
Again integrating both sides
![\int f'(x) dx=\int8x dx- \int2dx](https://img.qammunity.org/2021/formulas/mathematics/college/zxld90xz2vwlz5eew2holeao74slh9hl2d.png)
[
is constant of integration]
![\Rightarrow f(x)=4x^2-2x+C_2](https://img.qammunity.org/2021/formulas/mathematics/college/wsln1nkb4sbdthk3cf86bdd4hygxeg3qp0.png)
Initial condition f(0)=5
![5=4.0^2-2.0+C_2](https://img.qammunity.org/2021/formulas/mathematics/college/dp3fyuzyq4qjw49dfdrdmchwa6mvtyk4fj.png)
![\Rightarrow C_2=5](https://img.qammunity.org/2021/formulas/mathematics/college/xf3jy5qw9tf422r8ki53m0vy3rqlt3rh31.png)
![\therefore f(x)=4x^2-2x+5](https://img.qammunity.org/2021/formulas/mathematics/college/gm54b995xd24l2iv8gpibhod4k60pizirq.png)
Therefore the required solution is
![f(x)=4x^2-2x+5](https://img.qammunity.org/2021/formulas/mathematics/college/jweb4t9viz54gjxnf9zav9eln2t4ejrp0b.png)