Answer:
![m_(c) = 6768\,kg](https://img.qammunity.org/2021/formulas/physics/college/jzgdocedqhfznwuai0d1e35oybgrnlz48o.png)
Step-by-step explanation:
According to the Principle of Energy Conservation and the Work-Energy Theorem, the system is modelled as follows:
, where
.
Then,
![K_(f) = 0.78\cdot K_(o)](https://img.qammunity.org/2021/formulas/physics/college/qoo66mfh5fy1oouml4mosfgwfzsnqxmxos.png)
![0.5\cdot (m_(f)+m_(c))\cdot v_(f)^(2) = 0.39\cdot m_(f)\cdot v_(o)^(2)](https://img.qammunity.org/2021/formulas/physics/college/ftibpiu5zcbewj6o5iinr8ceb8gd0a18z0.png)
Besides, the Principle of Momentum Conservation describes the following model:
![m_(f)\cdot v_(o) = (m_(f)+m_(c))\cdot v_(f)](https://img.qammunity.org/2021/formulas/physics/college/97f9qs2syuew8y44dhado6aga1cbacmvlu.png)
The final velocity of the system is:
![v_(f) = (m_(f))/(m_(f)+m_(c))\cdot v_(o)](https://img.qammunity.org/2021/formulas/physics/college/y0j4pfh32sn0ejrttcckn45wo30v08oz40.png)
After substituting in the energy expression:
![0.5\cdot (m_(f)^(2))/(m_(f)+m_(c))\cdot v_(o)^(2) = 0.39\cdot m_(f)\cdot v_(o)^(2)](https://img.qammunity.org/2021/formulas/physics/college/qkt39qapn8jb3lkyzsjhar14xwizmcxtpg.png)
![0.5\cdot m_(f) = 0.39\cdot (m_(f)+m_(c))](https://img.qammunity.org/2021/formulas/physics/college/a73znqmrp2rw5z2s5sotzemqj9oqzgfx6z.png)
The mass of the caboose is:
![0.39\cdot m_(c) = 0.11\cdot m_(f)](https://img.qammunity.org/2021/formulas/physics/college/dodb88nh0th0oevqnv3dw303259orxne36.png)
![m_(c) = 0.282\cdot m_(f)](https://img.qammunity.org/2021/formulas/physics/college/pbe6sp2jygv70w6epxlz6uwfyx0a51icq7.png)
![m_(c) = 0.282\cdot (24000\,kg)](https://img.qammunity.org/2021/formulas/physics/college/ei9vldd9aoyglb6fssc8jsukam35osgnol.png)
![m_(c) = 6768\,kg](https://img.qammunity.org/2021/formulas/physics/college/jzgdocedqhfznwuai0d1e35oybgrnlz48o.png)