Answer:
Approximately
.
Step-by-step explanation:
Start by finding the concentration of
at equilibrium. The solubility equilibrium for
.
The ratio between the coefficient of
and that of
is
. For
Let the increase in
concentration be
. The increase in
concentration would be
. Note, that because of the
of
, the concentration of
- The concentration of
would be
. - The concentration of
would be
.
Apply the solubility product expression (again, note that in the equilibrium, the coefficient of
is two) to obtain:
.
Note, that the solubility product of
,
is considerably small. Therefore, at equilibrium, the concentration of
Apply this approximation to simplify
:
.
.
Calculate solubility (in grams per liter solution) from the concentration. The concentration of
is approximately
, meaning that there are approximately
of
.
As a result, the maximum solubility of
in this solution would be approximately
.