Answer:
0.139
Explanation:
We are given that
Total number of cards=52
n=18
We have to find the probability of drawing at least 7 spades
Total number of spaded in deck of 52 cards=13
Probability of getting spade=
![p=(13)/(52)=(1)/(4)](https://img.qammunity.org/2021/formulas/mathematics/college/108jzfldclg3zu2bk8edxfnhlq2c9hg40e.png)
Probability,
![P(E)=(favorable\;cases)/(total\;number\;of\;cases)](https://img.qammunity.org/2021/formulas/mathematics/college/xts0cle6mlp9hii6co6lfffy7kokb3ldkh.png)
Probability of getting no spade=
![q=1-p=1-(1)/(4)=(3)/(4)](https://img.qammunity.org/2021/formulas/mathematics/college/m3gcjmtu854ii9ekhoudoizpy6wkhghxca.png)
By binomial theorem of probability
![P(X=x)=\binom{n}r}p^rq^(n-r)](https://img.qammunity.org/2021/formulas/mathematics/college/4zcbm4qxz1rrn4wz66hggh993ibc10lk0b.png)
P(x
![\geq 7)=1-P(x\leq 6)](https://img.qammunity.org/2021/formulas/mathematics/college/zh3wsrenhc729xe6ko5syhzto6ghtlfq90.png)
The probability of drawing at least 7 spades=
![1-\sum_(r=0)^(6)\binom{18}{r}((3)/(4))^(18-r)((1)/(4))^r](https://img.qammunity.org/2021/formulas/mathematics/college/m19at5312y439081ysv7yf8b58bby6en9j.png)
The probability of drawing at least 7 spades=0.139