Answer:
Therefore the constant angular acceleration of the wheel 12.43 rad /s².
Step-by-step explanation:
![\triangle \theta =\omega_(av)t=(\omega_f+\omega_i)/(2)t](https://img.qammunity.org/2021/formulas/physics/college/ya51mxd5ixerzna6zxew9vfap87c29k0jj.png)
![\Rightarrow \triangle \theta =(\omega_f+\omega_i)/(2)t](https://img.qammunity.org/2021/formulas/physics/college/bvcg96ressth3wlr0sykggj3ip9jgcn2ai.png)
![\Rightarrow (2\triangle \theta)/(t) ={\omega_f+\omega_i}](https://img.qammunity.org/2021/formulas/physics/college/yx1sixhbuehp1elci3ltzuh3tujmsiggz5.png)
![\Rightarrow {\omega_i= (2\triangle \theta)/(t) -\omega_f}](https://img.qammunity.org/2021/formulas/physics/college/ftbrozd9afajtaczy61l64rklr46v3a3hm.png)
and
![\alpha =(\omega_f-\omega_i)/(t)](https://img.qammunity.org/2021/formulas/physics/college/z9qwlfzz0ez8dayxqdms1uekhp4oa2i7hl.png)
= initial angular velocity
= final angular velocity
= displacement
= angular acceleration
t = time
Here
= 37.0 revolution
rad [ since one revolution =
]
t=2.92 s
Final angular velocity =
= 97.8 rad/s
To find the angular velocity, first we need to find out the initial angular velocity
.
![{\omega_i= (2\triangle \theta)/(t) -\omega_f}](https://img.qammunity.org/2021/formulas/physics/college/eirt953tuddlzcpq7pquru56ldetg9f4zs.png)
![=(2*2\pi * 37.0)/(2.92)-97.8](https://img.qammunity.org/2021/formulas/physics/college/byzb81duhfxq273n3hrjodnerazv59pafb.png)
= 61.50 rad /s
Then the angular velocity is
![\alpha =(\omega_f-\omega_i)/(t)](https://img.qammunity.org/2021/formulas/physics/college/z9qwlfzz0ez8dayxqdms1uekhp4oa2i7hl.png)
rad /s²
=12.43 rad /s²
Therefore the constant angular acceleration of the wheel 12.43 rad /s².