Given:
CD = 18 cm
CE = 8 cm
To find:
The length of the radius of the circle A.
Solution:
Let the radius of the circle be x.
AD = AE = x
CA = CE + AE
CA = 8 + x
The angle between a tangent and radius is always right angle.
Therefore triangle ADC is a right triangle.
Using Pythagoras theorem:
![AD^2+CD^2=CA^2](https://img.qammunity.org/2021/formulas/mathematics/college/dz5tafgzzral4fbrknyp8lna0wp4gex5tn.png)
![x^2+18^2=(8+x)^2](https://img.qammunity.org/2021/formulas/mathematics/college/yj2a86tb47y68v4k91ubkt0u3m37luyicu.png)
Using algebraic identity:
![(a+b)^2=a^2+2ab+b^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/i78c6m27tvn37rh92mblgc3owe9vkpu7p0.png)
![x^2+324=8^2+16x+x^2](https://img.qammunity.org/2021/formulas/mathematics/college/p8c65prp79eklrya5u0dzw8drx5gmvddj8.png)
![x^2+324=64+16x+x^2](https://img.qammunity.org/2021/formulas/mathematics/college/e17nbd49r4mpk13hpxdd8prlavwcxkng7r.png)
Subtract x² from both sides.
![324=64+16x](https://img.qammunity.org/2021/formulas/mathematics/college/l5lwhm3wrl36ghejcnbk3vd6ivs8uccxwa.png)
Subtract 64 from both sides.
![260=16x](https://img.qammunity.org/2021/formulas/mathematics/college/7rrua7u5ltp9zwetljex6dzsb8lp3y4j67.png)
Divide by 16 on both sides, we get
![16.25=x](https://img.qammunity.org/2021/formulas/mathematics/college/jbgiqp39wkpnj5etrzf5v4nn4w64olnvoi.png)
The length of the radius of the circle is 16.25 cm.