Here is the correct question
A rotating wheel requires a time Δt = 4.28 seconds to rotate 37.0 revolutions. Its angular speed at the end of 4.28 seconds interval is ω = 75.9 rad/s. What is the constant angular acceleration (rad/s² ) of the wheel?
Answer:
10.09 rad/s²
Step-by-step explanation:
Given that :
![\theta = \ 37.0 \ revolutions](https://img.qammunity.org/2021/formulas/physics/college/9ymd5c9bpmejsdctzjxsr4a0zak7j7zvpy.png)
Then since 1 revolution =
![2 \pi \ rad](https://img.qammunity.org/2021/formulas/physics/college/ydkdg4b1wxselqnfhoi2v11nr5lapv41iy.png)
![\theta = 37.0 \ rev * (2 \pi \ rad )/( 1 \ rev)](https://img.qammunity.org/2021/formulas/physics/college/zlq9nneohxyax4k4rhgzvf96ym0fdvzjbq.png)
![\theta = 232.48 \ rad](https://img.qammunity.org/2021/formulas/physics/college/rfyzzn0d24plxat82kl3ur5beky9oro8db.png)
The first equation of motion for wheel can be expressed as :
![\omega = \omega_0t + \alpha t](https://img.qammunity.org/2021/formulas/physics/college/ivqid80ahrstapv99adakqmzvnbln2omoi.png)
![\omega_0 = \omega- \alpha t](https://img.qammunity.org/2021/formulas/physics/college/mqt3nidcvi54beybjsf01trm273xv3xkni.png)
where
= 75.9 rad/s
![\omega_0 = 75.9 rad/s - \alpha (4.28 \ s)](https://img.qammunity.org/2021/formulas/physics/college/m4kcowb5w9obktjaltteoueq7at9qbb9vd.png)
From the second equation of the motion
![\theta = \omega_0t + (1)/(2) \alpha t ^2](https://img.qammunity.org/2021/formulas/physics/college/xq2l87twfmobbekw4l8nn0ulq3glbchcii.png)
where ;
![\omega_0 = 75.9 rad/s - \alpha (4.28 \ s)](https://img.qammunity.org/2021/formulas/physics/college/m4kcowb5w9obktjaltteoueq7at9qbb9vd.png)
t = 4.28 s
![\theta = 232.48 \ rad](https://img.qammunity.org/2021/formulas/physics/college/rfyzzn0d24plxat82kl3ur5beky9oro8db.png)
Then
![232.48 \ rad= (75.9 rad/s - \alpha (4.28 \ s))(4.28 \ s)+ (1)/(2) \alpha (4.28 \ s) ^2](https://img.qammunity.org/2021/formulas/physics/college/m2worjks1isaoqvxbiutobhm2itu6pmxbz.png)
![232.48 \ rad= 324.852 rad/s - 18.3184 \alpha s^2 + 9.1592 \alpha s ^2](https://img.qammunity.org/2021/formulas/physics/college/9t948x9makqn8yl9pppu5f1sj01st4bot7.png)
![324.852 rad/s - 232.48 \ rad= 18.3184 \alpha s^2 - 9.1592 \alpha s ^2](https://img.qammunity.org/2021/formulas/physics/college/lqtw8wh4ihoi0c21v4tb0242oaoyvpdg6e.png)
![92.372 \ rad= 9.1592 \alpha s ^2](https://img.qammunity.org/2021/formulas/physics/college/4gf58c9u63fp1tr6zbw30vbpfzdoxq6tkh.png)
![\alpha = \frac {92.372 \ rad} {9.1592 \ s ^2}](https://img.qammunity.org/2021/formulas/physics/college/2lvonjpod9touupmo8jbosldj0hguiix16.png)
![\alpha = 10.09 \ \ rad/s^2](https://img.qammunity.org/2021/formulas/physics/college/fduqv4lssilv2i40ytth4x626idp3yu4gj.png)
Thus, the angular acceleration of the wheel = 10.09 rad/s²