Answer:
The population of the country will be 510 million during the year of 2018.
Explanation:
The exponential model for the population, in millions, t years after 2003 is.
![P(t) = 347.5e^(0.024t)](https://img.qammunity.org/2021/formulas/mathematics/college/e5rbwecyuhu7bcopodn7gzmyvhowpk0ylg.png)
Use the model to determine when the population of the country will be 510 million.
t years after 2003, in which t is found when P(t) = 510. So
![P(t) = 347.5e^(0.024t)](https://img.qammunity.org/2021/formulas/mathematics/college/e5rbwecyuhu7bcopodn7gzmyvhowpk0ylg.png)
![510 = 347.5e^(0.024t)](https://img.qammunity.org/2021/formulas/mathematics/college/gks5v73jt3mqkn7opwflwddi79nfww8uys.png)
![e^(0.025t) = (510)/(347.5)](https://img.qammunity.org/2021/formulas/mathematics/college/lmjp75sfytg0cdsdsnjnmr5aexp28884ex.png)
Applying ln to both sides, so we can find t
![\ln{e^(0.025t)} = \ln{(510)/(347.5)}](https://img.qammunity.org/2021/formulas/mathematics/college/oz5pmwk01ltdj90qtdphko7vt326hn2gk3.png)
![t = \frac{\ln{(510)/(347.5)}}{0.025}](https://img.qammunity.org/2021/formulas/mathematics/college/gx1tgmd229xeoyjq1fr8naqar11ltj5uv6.png)
![t = 15.35](https://img.qammunity.org/2021/formulas/mathematics/college/61fvud0nyuaceq25ddbo9e7d47fe710hu1.png)
15.35 years after 2003, so during the year of 2018.
The population of the country will be 510 million during the year of 2018.