193k views
2 votes
A sphere of radius 3.09 cm and a spherical shell of radius 7.97 cm are rolling without slipping along the same floor. The two objects have the same mass. If they are to have the same total kinetic energy, what should the ratio of the sphere's angular speed to the spherical shell's angular speed be?

1 Answer

3 votes

Answer:

2.4

Step-by-step explanation:

We are given that


r_1=3.09 cm


r_2=7.97 cm

Let mass of each object =m

K.E of each object=E

We have to find the ration of sphere's angular speed to the spherical shell's angular speed.

Moment of inertia of sphere,
I_1=(2)/(5)Mr^2_1

Moment of inertia of spherical shell,
I_2=(2)/(3)Mr^2_2

Linear speed,
v=\omega r

K.E of sphere ,
E_1=(1)/(2)mr^2_1\omega^2_1+(1)/(2)I_1\omega^2_1

K.E of spherical shell,
E_2=(1)/(2)mr^2_2\omega^2_2+(1)/(2)I_2\omega^2_2


E_1=E_2=E


(1)/(2)mr^2_1\omega^2_1+(1)/(2)I_1\omega^2_1=(1)/(2)mr^2_2\omega^2_2+(1)/(2)I_2\omega^2_2


\omega^2_1(mr^2_1+I_1)=\omega^2_2(mr^2_2+I_2)


(\omega^2_1)/(\omega^2_2)=(mr^2_2+(2)/(5)mr^2_2)/(mr^2_1+(2)/(3)mr^2_1)


(\omega_1)/(\omega_2)=\sqrt{(r^2_2(7)/(5))/(r^2_1(5)/(3))}


(\omega_1)/(\omega_2)=(r_2)/(r_1)\sqrt{(21)/(25)}=(7.97)/(3.09)* \sqrt{(21)/(25)}=2.4

User Randolpho
by
8.7k points